
1

2

Service Disclaimer
This manual was written for use with the QuantScriptTM programming language. This
manual and the product described in it are copyrighted, with all rights reserved. This
manual and the QuantScriptTM outputs (charts, images, data, market quotes, and other
features belonging to the product) may not be copied, except as otherwise provided in
your license or as expressly permitted in writing by S-Trader.com and/or its development
partners.

 Export of this technology may be controlled by the United States Government and/
or the Canadian Government. Diversion contrary to U.S. and/or Canadian law prohibited.
Copyright © 2018 - 2004 by S-Trader.com. All rights reserved. All trademarks and service
marks are the property of their respective owners. Use of the QuantScriptTM product
and other services accompanying your license and its documentation are governed
by the terms set forth in your license. Such use is at your sole risk. The service and its
documentation (including this manual) are provided «AS IS» and without warranty of any
kind.

 S-Trader.com, its development partners AND ITS LICENSORS (HEREINAFTER
COLLECTIVELY REFERRED TO AS “S-TRADER”) EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND AGAINST
INFRINGEMENT. WHILE WE MAKE AN EFFORT TO ENSURE THE BEST QUALITY OF
SERVICE POSSIBLE, S-TRADER DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SERVICE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SERVICE WILL BE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTS IN THE SERVICE
OR ERRORS IN THE DATA WILL BE CORRECTED. FURTHERMORE, S-TRADER DOES NOT
WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF
THE USE OF THE SERVICE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR
ADVICE GIVEN BY S-TRADER OR AN S-TRADER AUTHORIZED REPRESENTATIVE SHALL
CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY.

3

 SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO THE ABOVE EXCLUSION MAY NOT APPLY. UNDER NO CIRCUMSTANCES INCLUDING
NEGLIGENCE, SHALL S-TRADER, ITS LICENSORS OR THEIR DIRECTORS, OFFICERS,
EMPLOYEES OR AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE OR THE INABILITY TO USE THE SERVICE OR ITS DOCUMENTATION, EVEN IF
S-TRADER OR AN S-TRADER AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY. In no event shall
S-TRADER’s total liability to you for all damages, losses, and causes of action (whether in
contract, tort, including negligence, or otherwise) exceed the monthly lease fee paid for
the product and its documentation.

Trading Disclaimer
No offer or solicitation to buy or sell cash or derivative securities, including but not
limited to futures, options or options on futures is being made. The service is not and
should thus not be construed as trading or investment advice and no recommendation
or strategy is being made, given or in any manner endorsed by S-TRADER or any of its
affiliates, partners, employees or developing partners. Past performance, whether actual
or indicated by historical tests of strategies, is no guarantee of future performance or
success. Active trading is generally not appropriate for someone of limited resources,
limited investment or trading experience, or low-risk tolerance, or who does not have
capital to risk. There is a risk of loss in stock, futures and forex trading. Market data may
be delayed or unavailable at times due to system and software errors, Internet traffic,
outages and other factors. Trading carries a high level of risk and may not be suitable for
all investors. There is a possibility that you may sustain a loss equal to or greater than
your entire investment; therefore, you should not invest or risk money that you cannot
afford to lose. You should be aware of all risks associated with trading your particular
markets and products.

Special Thanks
Thanks to all the users and testers of QuantScriptTM, whose suggestions have made it a
much better programming language than it would have otherwise been.

4

Contents
HOW THIS GUIDE IS ORGANIZED 9

19

12

23

27

29

11

21

16

25

28

31

32

10

20

15

23

27

30

11

22

17

26

29

32

32

Introduction

The REF Function

Program Structure

Equity Valuation (SVA) Functions

PREREQUISITES

Important Concepts

The TREND Function

Functions

Technical Analysis

The Quant Script Programming Language

Primitive Functions & Operators

Boolean Logic

Price Gaps and Volatility

Vector Programming

Crossovers

Primitives

Key Reversal Script

Logical Operator Primitives

Extremes Primitives

COUNTIF Function

HHV Function

LASTIF Function

LLV Function

“IF” Conditional Function

MAX Function

5

32

37

35

40

42

42

33

39

35

41

42

43

43

33

38

35

41

42

43

34

40

36

42

42

43

43

MAXOF Function

Summation Primitives

CROSSOVER

SUM Function

TREND

MIN Function

CUM Function

LOOP Function

SUMIF Function

Math Functions

MINOF Function

ABS – Absolute Value Function

CUMS Function

REF Function

Trend Primitives

Introduction

EXP – Exponential Function

Algebraic Functions

LOG – Logarithmic Function

ATN – Arctangent Function

LOG10 – Log of 10 Function

COS – Cosinus Function

RND – Random Function

SIN – Sinus Function

Trigonometric Functions

TAN – Tangent Function

6

Operators

Greater Than (>)

AND(&&)

Less Than Or Equal To (<= or =<)

NOT

Comparison Operators

Less Than (<)

EQV(&)

Not Equal (<> or !=)

OR(||)

Equal (= or ==)

Addition operator (+)

Greater Than Or Equal To (>= or =>)

MOD

Logical Operators

XOR(|)

Division operator (/ \)

Mathematical Operators

Multiplication operator (*)

Introduction

Subtraction operator (-)

Moving Averages List

Power operator(^)

Envelopes

Moving Averages

Introduction
Envelopes List

44

48

45

50

53

53

45

49

46

51

53

55

56

44

49

46

51

53

54

45

50

47

52

53

55

57
57

7

Oscillators (Price)

Oscillators - Money Flow

 Volatility Indicators

Trend Indicators

Statistical Functions

Introduction

Introduction

Introduction

Introduction

Introduction

Price Oscillators List

Relative Strength Functions List

Money Flow Oscillators List

Volatility Indicators List

Trend Indicators List

Statistical Functions List

General Indicator Functions

Relative Strength Functions

Candlesticks Patterns

Introduction

What is a ‹Candlestick›

Sample Scripts

Candlestick Pattern Function

Sample Custom Study 1 – RSI Histogram

SVA Equity Valuation Functions

Sample Custom Study 2 – RSI Histogram Scoring
Sample Custom Study 3 – RSI Histogram days since turning positive and negative

58

64

62

67

69

72

59

66

63

68

71

74

76

59

65

62

68

70

73

61

66

64

69

71

75

78
80

8

Using the Script Wizard

Custom Studies

Expert Advisers

Scripted Alerts

Sample Custom Study 4 – RSI Histogram by Script Wizard

Build Custom Studies by Code Editor

Build filters or triggers to plot on charts

Back-test & Live Run

Using Quant Script in the S-Trader

Nest Custom Studies inside other Built-in Studies

Build Custom Studies by Code Wizard

Consensus Reports

Run Custom Studies inside Watch List columns

Plot Custom Studies on charts

Use Custom Studies inside Portfolio Systems

Plot Custom Studies on charts – RESULT function only

Use Custom Studies inside Loop Systems

82

92

88

96

88

94

89

99

82

93

89

96

88

96

90

100
100

9

HOW THIS GUIDE IS ORGANIZED
Chapters 1 through 4 of this guide contain references to the core functions used
in performing common, basic tasks such as identifying securities within a specific
price range, increasing in volatility, crossing over an indicator and so forth. You can
cut and paste many of these examples right into the Quant Script code editor in
your software.

Chapters 5 through 13 of this guide contain references to functions, properties,
and constants supported by the Quant Script language as well as hands-on trading
system examples. Many of the functions available in Quant Script are also built
in the S-Trader chart component and have detailed spec sheets explaining all
parameters, formulas, long and short-form syntaxes. We also provide samples of
the code editor, code wizard and chart component dialogs.

This method of organization allows the beginner programmer to see results
immediately while learning at his or her own pace.	

10

PREREQUISITES
A basic understanding of technical analysis is the only pre-requisite for using
this programming guide. For a thorough understanding of how to use previously
defined scripts with modules of the S-trader application please consult the S-Trader
application manual or the S-Trader website.

Recommended readings

http://www.s-trader.com/?page_id=11849

11

The Quant Script Programming Language
Introduction
Quant Script is the engine that drives the scripting language in your S-Trader trading
software. It is a non-procedural scientific vector programming language that was
designed specifically for developing trading systems. A script is simply a set of
instructions that tell the Quant Script engine to do something you deem useful,
such as provide an alert when the price of one stock reaches a new high, crosses
over a moving average, or drops by a certain percentage. There are many uses.

12

Important Concepts
Quant Script is a powerful and versatile programming language for traders. The
language provides the framework required to build sophisticated trading programs
piece by piece without extensive training or programming experience. Not only can
the Quant Script syntax be mastered with almost no learning curve, the S-Trader
application also allows you to create scripts using a versatile Quant Script Wizard.

13

14

The following script is a very simple example that identifies markets that are trading
higher than the opening price:

LAST > OPEN

It almost goes without saying that the purpose of this script is to identify when the
last price is trading higher than the open price. It is nearly as plain as English.

Just as a spoken language gives you many ways to express each idea, the Quant
Script programming language provides a wide variety of ways to program a trading
system. Scripts can be very simple as just shown in the example above or extremely
complex, consisting of many hundreds of lines of instructions. For most systems,
individual scripts usually consist of just a few lines of code. Scripts can be further
combined and utilized in unique ways using the existing S-Trader infrastructure
and modules to create the most powerful trading systems or trade supporting
elements you can imagine.

The examples outlined in the first section of this guide are relatively short and
simple but provide a solid foundation for the development of more complex scripts.

15

Boolean Logic
The scripts shown in this first section may be linked together using Boolean logic
just by adding the AND or the OR keyword. For example :

Script 1 evaluates to TRUE when the last price is higher than the open price:

LAST > OPEN

Script 2 evaluates to TRUE when volume is two times the previous period’s volume:

VOLUME >REF(VOLUME, 1) * 2

You can aggregate scripts so that your script returns results for securities that are
higher than the open and with the volume two times the previous volume:

LAST > OPEN AND VOLUME >REF(VOLUME, 1) * 2

Likewise, you can change the AND into an OR to find securities that are either
trading higher than the open or have a volume two times the previous volume:

LAST > OPEN OR VOLUME >REF(VOLUME, 1) * 2

Once again, the instructions are nearly as plain as the English language. The use of
Boolean logic with the AND and OR keywords is a very important concept that is
used extensively by the Quant Script programming language.

16

Program Structure
It does not matter if your code is all on a single line or on multiple lines. It is often
easier to read a script where the code is broken into multiple lines. The following
script will work exactly as the previous example, but is somewhat easier to read:

LAST > OPEN OR
VOLUME >REF(VOLUME, 1) * 2

It is good practice to structure your scripts to make them as intuitive as possible
for future reference. In some cases it may be useful to add comments to a very
complex script. A comment is used to include explanatory remarks in a script.

Whenever the pound sign is placed at the beginning of a line, the script will ignore
the words that follow. The words will only serve as a comment or note to make the
script more understandable:

Evaluates to true when the last price is higher than the open or
LAST > OPEN OR

the volume is 2 X’s the previous volume:
VOLUME >REF(VOLUME, 1) * 2

The script runs just as it did before with the only difference being that you can more
easily understand the design and purpose of the script.

It may not be a bad idea to maintain your scripts in TXT files managed by a known
code editor such as NotePad++ or Crimson Editor and then copy the content inside
S-Trader custom study files. Click on the logos below to download the installers.

17

Functions

The Quant Script language provides many built-in functions that make programming
easier. When functions are built into the core of a programming language they are
referred to as primitives. The TREND function is one example:

TREND(CLOSE, 30) = UP In this example, the TREND function tells Quant Script to
identify trades where the closing price is in a 30-day uptrend.

The values that are contained inside a function (such as the REF function or the
TREND function) are called arguments. For instance, there are two arguments in
the TREND function.
Argument #1 is the closing price, and argument #2 is 30, as in “30 days” or “30
periods”.

Only one of two things will occur if you use a function incorrectly:
- Quant Script will automatically fix the problem and the script will still run, or;
- Quant Script will report an error, telling you what’s wrong with the script and
allowing you to fix the problem and try again.

18

In other words, user input errors will never cause QuantScript to break or return
erroneous results without first warning you about a potential problem.

Let’s take CLOSE out of the TREND function and then try to run the script again:

SET RESULT = TREND(30)

The following error occurs:
Error: argument of ‹TREND› function not optional.

We are given the option to fix the script and try again.

19

Vector Programming
Vector programming languages (also known as array or multidimensional languages)
generalize operations on scalars to apply transparently to vectors, matrices, and
higher dimensional arrays.

The fundamental idea behind vector programming is that operations apply at once
to an entire set of values (a vector or field). This allows you to think and operate on
whole aggregates of data, without having to resort to explicit loops of individual
scalar operations.

As an example, to calculate a simple moving average based on the median price
of a stock over 30 days, in a traditional programming language such as BASIC you
would be required to write a program similar to this:

For each symbol
For bar = 30 to max
Average = 0
For n = bar - 30 to bar
median = (CLOSE + OPEN) / 2
Average = Average + median
Next
MedianAverages(bar) = Average / 30 Next bar
Next symbol

Nine to ten lines of code would be required to create the “MedianAverages” vector.
But with Quant Script, you can effectively accomplish the same thing using only
one line:

SET MedianAverage = SimpleMovingAverage((CLOSE + OPEN) / 2, 30)

And now MedianAverage is actually a new vector that contains the 30-period simple
moving average of the median price of the stock at each point. It is not uncommon
to find array programming language “one-liners” that require more than a couple
of pages of BASIC, Java or C++ code. QuantScript thus allows traders to put their
ideas at work and test them or run them with much less effort.

20

The REF Function
At this point you may be wondering what “REF” and “TREND” are. These are two of
the very useful primitives that are built into the Quant Script language.

The REF function is used whenever you want to reference a value at any specific
point in a vector. Assume the MedianAverage vector contains the average median
price of a stock. In order to access a particular element in the vector using a
traditional programming language, you would write:

SET A = MedianAverage[n]

Using Quant Script you would write:

SET A = REF(MedianAverage, n)

The main difference other than a variation in syntax is that traditional languages
reference the points in a vector starting from the beginning, or 0 if the vectors are
zero-based. Quant Script on the other hand references values backwards, from
the end. This is most convenient since the purpose of Quant Script is of course, to
develop trading systems. It is always the last, most recent value that is of most
importance. To get the most recent value in the MedianAverage vector we could
write:

SET A = REF(MedianAverage, 0)
This is the same as not using the REF function at all. Therefore the preferred way
to get the last value (the most recent value) in a vector is to simply write:

SET A = MedianAverage

The last value of a vector is always assumed when the REF function is absent. To
get the value as of one bar ago, we would write:

SET A = REF(MedianAverage, 1)

Or two bars ago: SET A = REF(MedianAverage, 2)

21

The TREND Function
Traders often refer to “trending” as a state when the price of a stock has been
increasing (up-trending) or decreasing (down-trending) for several days, weeks,
months, or years. The typical investor or trader would avoid opening a new long
position of a stock that has been in a downtrend for many months. Quant Script
provides a primitive function aptly named TREND especially for detecting trends in
stock price, volume, or indicators:

TREND(CLOSE, 30) = UP

This tells Quant Script to identify trades where the closing price is in a 30-period
uptrend. Similarly, you could also use the TREND function to find trends in volume
or technical indicators:

the volume has been in a downtrend for at least 10 periods:
TREND(VOLUME, 10) = DOWN

#the 14-day CMO indicator has been up-trending for at least 20 days:
TREND(CMO(CLOSE, 14), 20) = UP

It is useful to use the TREND function for confirming a trading system signal.
Suppose we have a trading system that buys when the close price crosses above a
20-day Simple Moving Average. The script may look similar to this:

Gives a buy signal when the close price crosses above the 20-day SMA
CROSSOVER(CLOSE, SimpleMovingAverage(CLOSE, 20)) = TRUE

It would be helpful in this case to narrow the script down to only the securities that
have been in a general downtrend for some time. We can add the following line of
code to achieve this:

AND TREND(CLOSE, 40) = DOWN
TREND tells us if a vector has been trending upwards, downwards, or sideways,
but does not tell us the degree of which it has been trending. We can use the REF
function in order to determine the range in which the data has been trending. To
find the change from the most current price and the price 40 bars ago, we could
write:
SET A = LAST - REF(CLOSE, 40)

22

Price Gaps and Volatility
Although the TREND function can be used for identifying trends and the REF
function can be used for determining the degree to which a stock has moved, it
is often very useful to identify gaps in prices and extreme volume changes, which
may be early indications of a change in trend. We can achieve this by writing:

Returns true when the price has gapped up
LOW >REF(HIGH, 1)

Or:

Returns true when the price has gapped down
HIGH <REF(LOW, 1)

You can further specify a minimum percentage for the price gap:

Returns true when the price has gapped up at least 1%
LOW >REF(HIGH, 1) * 1.01

And with a slight variation we can also check whether the volume is either up or
down by a large margin:

the volume is up 1000%
VOLUME >REF(VOLUME, 1) * 10

Or by the average volume:

the volume is up 1000% over average volume
VOLUME >SimpleMovingAverage(VOLUME, 30) * 10

We can also measure volatility in price or volume by using any one of the built-
in technical indicators such as the Volume Oscillator, Chaikin Volatility Index,
Coefficient of Determination, Price Rate of Change, Historical Volatility Index, etc.
These technical indicators are described in Chapters 512-.

23

Equity Valuation (SVA) Functions

Technical Analysis

Unique to the S-Trader platform and the Quant Script engine are the SVA Equity
Valuation functions. SVA stems from Strategic Valuation Analysis and is a suite
of indicators used to determine the intrinsic value and the stability of companies
based on a proprietary balance sheet analysis methodology.

SVA_function(line acronym) / FMV_function() / SR_function()

the Close Price is between Normal and High Mid breakpoints
CLOSE >= SVA_function({N}) AND CLOSE<=SVA_function({HM})

the Stability Ratio has been trending UP
TREND(SR_function(),30) = UP

the Close is below the Fair Market Value
Close < FMV_function()

Quant Script provides many built-in technical analysis functions. Using only a single
line of code you can calculate functions such as Moving Averages, Bollinger Bands,
Directional Movement Index or validate Japanese Candlestick patterns. A complete
list of technical analysis functions is covered in chapters 5 through 13.

The following is a simple example of how to use one of the most common technical
analysis functions, the simple moving average:

LAST > SimpleMovingAverage(CLOSE, 20)

The script will return TRUE if the last price is over the 20-day moving average of
the close price.

The CLOSE variable is actually a vector of closing prices, not just the most recent
close price. You can use the OPEN, HIGH, LOW, CLOSE and VOLUME vectors to
create your own calculated vectors using the SET keyword:

SET Median = (CLOSE + OPEN) / 2

24

This code creates a vector containing the median price for each trading day. We can
then use the Median vector inside any function that requires a vector:

LAST > SimpleMovingAverage(Median, 20)

This condition will evaluate to TRUE when the last price is greater than a 20-day
moving average of the median price.

Because functions return vectors, functions can also be used as valid arguments
within other functions:

LAST > SimpleMovingAverage(SimpleMovingAverage(CLOSE, 30), 20)

This evaluates to TRUE when the last price is greater than the 20-day moving
average of the 30-day moving average of the close price.

It is much better, however, to first initialize the functions you want to use as
arguments:

SET A = SimpleMovingAverage(CLOSE, 30)
SET RESULT = LAST > SimpleMovingAverage(A, 20)

Please note that many technical indicator names are quite long, therefore function
abbreviations have been conveniently provided.

Long name, i.e. long-form function: SimpleMovingAverage(CLOSE, 30)
Abbreviated name, i.e. short-form function: SMA(CLOSE, 30)

SMA is the same function as SimpleMovingAverage and both methods work the
same way. You will note each function has a long-form and a short-form Quant
Script syntax.

25

Crossovers
You may be familiar with the term “crossover”, which is what happens when one
series crosses over the top of another series as depicted in the image below.
Many technical indicators such as the MACD for example, have a “signal line”. A buy
or sell signal is generated when the signal line crosses over or under the technical
indicator.

The CROSSOVER function helps you identify when one series has crossed over
another.
For example, we can find the exact point in time when one moving average
crossed over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to TRUE when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:
CROSSOVER(MA2, MA1) = TRUE

This would be equivalent to writing:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

MA1 > MA2 AND REF(MA1,1) < REF(MA2, 1)

26

Key Reversal Script
Finally, before we move into the technical reference section of this guide let’s create
a script that finds Key Reversals, so that you can see firsthand how Quant Script
can be used to create trading systems based upon complex rules. The definition of
a Key Reversal is that after an uptrend, the open must be above the previous close,
the most current bar must make a new high, and the last price must be below the
previous low. Let’s translate that into script form:

#First make sure that the stock is in an uptrend
TREND(CLOSE, 30) = UP

#The open must be above yesterday’s close
AND OPEN >REF(CLOSE, 1)

#Today must be making a new high
AND HIGH >= REF(HIGH,1)

And the last price must be below yesterday’s low
AND LAST <REF(LOW, 1)

Ironically, the script minus comments is actually shorter than the English definition
of this trading system. Key Reversals do not occur frequently but they are very
reliable when they do occur. You can experiment by removing the line AND HIGH
>= REF(HIGH,1), or you can replace it with other criteria. This script can also be
reversed:

#First make sure that the stock is in a downtrend
TREND(CLOSE, 30) = DOWN

#The open must be below yesterday’s close
AND OPEN <REF(CLOSE, 1)

#Today must be making a new low
AND LOW <= REF(LOW,1)

 # And the last price must be above yesterday’s high
AND LAST >REF(HIGH, 1)

Again, the signal seldom occurs but is very reliable when it does.

27

Primitive Functions & Operators
Primitives
This chapter covers the core functions of Quant Script, also known as primitives.
These important functions define the Quant Script programming language and
provide the basic framework required to build complex trading systems from the
ground up.

 Literally any type of trading system can be developed using the Quant Script
programming language with minimal effort. If a system can be expressed in
mathematical terms or programmed in any structured, procedural language such
as C++, VB, or Java for example, you can rest assured that the same formulas can
also be programmed using the Quant Script programming language.

 Sometimes technical analysis formulas can be very complex. For example,
technical analysis functions exist that require recursive calculations and complicated
IF – Then - ELSE structures as part of their formula. These complex trading systems
are traditionally developed in a low level programming language but most if not all
of them can also be developed using Quant Script. We have successfully built such
scripts consisting of many hundreds of lines and have successfully ran them live
on tick charts.

 This chapter outlines how Quant Script can be used to perform these same
calculations in a much simpler way by means of vector operations and simulated
control structure.

28

Logical Operator Primitives

29

COUNTIF Function

LASTIF Function

COUNTIF(Condition)

Returns a vector representing the total number of times the specified condition
evaluated to TRUE.

Example:

SET RESULT = COUNTIF(CROSSOVER(SimpleMovingAverage(CLOSE, 14), CLOSE))

The script returns a vector with increasing values expressing the number of times
the 14-day Simple Moving Average crossed over the closing price.

LASTIF(Condition)

Similar to COUNTIF, except LASTIF returns a vector containing the number of
periods since the last time the specified condition evaluated to TRUE. The count is
reset to zero each time the condition evaluates to TRUE.

Example:

SET RESULT = LASTIF(CLOSE < REF(CLOSE, 1))

The script returns a vector that increases in value for each bar where the closing
price was not less than the previous closing price. When the condition evaluates
to TRUE, meaning the closing price was less than the previous closing price, the
reference count is reset to zero.

30

“IF” Conditional Function
IF(Condition, True part, False part)

The conditional “IF” function allows you to design complex Boolean logic filters.

Example:

If you paste the following script into the Script area in your trading software
application, you will see a column of numbers that oscillate between 1 and -1,
depending on when the closing price is greater than the opening price:

SET A = IF(CLOSE > OPEN, 1, -1)

- The first argument of the “IF” function is a logical test.
- The second argument is the value that will be used if the condition evaluates to
 TRUE.
- Conversely, the third argument is the value that will be used if the condition
 evaluates to FALSE.

The logical test may be any value or expression that can be evaluated to TRUE
or FALSE. For example, CLOSE = OPEN is a logical expression; if the close price is
the same as the opening price, the expression evaluates to TRUE. Otherwise, the
expression evaluates to FALSE.

Conditional IF functions can be nested, provided the conditions evaluated are
properly initialized:

SET Con1 = (CLOSE>OPEN)

SET Con2 = (CLOSE=HIGH)

SET A = If(Con1, 1, If(Con2, 2, 0))

31

Extremes Primitives

32

HHV Function

LLV Function

MAX Function

MAXOF Function

HighestHighValue(Periods) / HHV(Periods)

This returns the highest value of the high price over the specified number of periods.

HIGH = HHV(21) evaluates to TRUE when the high is the highest high in the past
21 bars.

LowestLowValue(Periods) / LLV(Periods)

This returns the lowest value of the low price over the specified number of periods.

LOW = LLV(21) evaluates to TRUE when the low is the lowest low in the past 21
bars.

MAX(Vector, Periods)

This returns a vector containing a running maximum, as specified by the Periods
argument. The values represent the maximum value for each window.

MAX(CLOSE, 10) returns a vector of maximum values based on a 10- period
window.

MAXOF(Vector1, Vector2, [Vector3]…[Vector8])

This returns a vector containing a maximum value of all specified vectors, for up
to eight vectors. Vector1 and Vector2 are required and vectors 3 through 8 are
optional.

MAXOF(CLOSE, OPEN) returns a vector containing the maximum value for each
bar, which is either the opening price or the closing price in this example.

33

MIN Function

MINOF Function

MIN(Vector, Periods)

This returns a vector containing a running minimum, as specified by the Periods
argument. The values represent the minimum value for each window.

MIN(CLOSE, 10) returns a vector of minimum values based on a 10- period
window.	

MINOF(Vector1, Vector2, [Vector3]…[Vector8])

This returns a vector containing a minimum value of all specified vectors, for up
to eight vectors. Vector1 and Vector2 are required and vectors 3 through 8 are
optional.

MINOF(CLOSE, OPEN) returns a vector containing the minimum value for each bar,
which is either the opening price or the closing price in this example.

34

Summation Primitives

35

CUM Function

CUMS Function

SUM Function

CUM(Vector, Periods)

Cummulative(vector, periods)

The CUMMULATIVE function outputs a vector containing a running sum, as specified
by the Periods argument.

CUM(Close, 10) outputs the running sum of the past 10 periods closing prices.

CUMS(Vector)

CummulativeSeries(Vector)

The CUMMULATIVE SERIES function outputs a vector containing a running sum of
the entire series

CUMS(Volume) outputs the running sum of all periods’ volume.

SUM(Vector, Periods)

The SUM function (not to be confused with the SUMIF function) outputs a vector
containing a running sum, as specified by the Periods argument.

SUM(CLOSE, 10) returns a vector of closing price sums based on a 10-period
window.

36

SUMIF Function
SUMIF(Condition, Vector)

This is a hybrid between an “IF” logical operator primitive and a summation primitive.
This function outputs a running sum of all values in the supplied Vector wherever
the supplied Condition evaluates to TRUE.

For example if we wanted a vector containing the sum of volume for all periods
where the closing price closed up 0.05%, we could write:

SET A = CLOSE > (REF(CLOSE,1)*(1.0005))

SET RESULT = SUMIF(A, VOLUME)

The RESULT will be a vector containing a running sum of volume for each period
where the closing price closed up at least 0.05%.

37

Trend Primitives

38

CROSSOVER
CROSSOVER(Vector1, Vector2) = TRUE / FALSE

Many technical indicators such as the MACD for example, have a “signal line”.
Traditionally a buy or sell signal is generated when the signal line crosses over or
under the technical indicator.

The CROSSOVER function helps you when one series has crossed over another.
For example, we can find the exact point in time when one moving average crossed
over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to TRUE when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:

CROSSOVER(MA2, MA1) = TRUE

A different way to write this script would be:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

MA1 > MA2 AND REF(MA1,1)<REF(MA2,1)

39

LOOP Function
LOOP(Vector1, Vector2, Offset1, Offset2, Operator)

LOOP provides simulated control structure by means of a single function call.

Vector1 is the vector to initialize the calculation from. Offset1 is the offset where
values are referenced in Vector1 for the incremental calculation, and Offset2 is the
offset where values are referenced from in Vector2.

Example 1:

LOOP(Vector1, Vector2, 1, 2, Multiply) is a series that can only be calculated from
index number 3 and each term results by multiplying a 1 period offset Vector 1
value with a 2 period offset Vector 2 value.

 Vector 1	 Vector 2	 LOOP

 1.25 	 1	
 2.25	 2	
 3.25	 3	 2.25*1
 4.25	 4	 3.25*2
 5.25 	 5	 4.25*3
 6.25 	 6	 5.25*4
 7.25	 7	 6.25*5

40

REF Function

TREND

REF(Vector, Periods)

By default all calculations are performed on the last, most recent value of a vector.
The following script evaluates to TRUE when the last open price (the current bar’s
open price) is less than $30:

OPEN < 30

OPEN is assumed to be the current bar’s open by default. You can reference a
previous value of a vector by using the REF function:

REF(OPEN, 1) < 30

And now the script will evaluate whether previous bar’s open price was less than
$30. The number 1 (the second argument) tells the REF function to reference values
as of one bar ago. To reference values two bars ago, simply use 2 instead of 1. The
valid range for the Periods argument is 1 - 250 unless otherwise noted.

TREND(Vector)

The TREND function can be used to determine if data is trending upwards,
downwards, or sideways. This function can be used on the price (open, high, low,
close), volume, or any other vector. The TREND function returns a constant of either
UP, DOWN or SIDEWAYS.

Example: TREND(CLOSE) = UP AND TREND(VOLUME) = DOWN

TREND is often the first function used as a means of filtering securities that are not
trending in the desired direction.

41

Math Functions
Introduction
Note that all math functions return a vector. For example ABS(CLOSE - OPEN)
returns a vector of the ABS value of CLOSE - OPEN (one record per bar). The RND
function returns a vector of random values, one for each bar, and so forth.

42

Algebraic Functions
ABS – Absolute Value Function

EXP – Exponential Function

LOG – Logarithmic Function

LOG10 – Log of 10 Function

RND – Random Function

The ABS function returns the absolute value for a number. Negative numbers
become positive and positive numbers remain positive.

Example: ABS(CLOSE - OPEN). The script always evaluates to a positive number,
even if the opening price is greater than the closing price.

EXP raises e to the power of a number. The LOG function is the inverse of this
function.

Example: EXP(3.26). The script outputs 26.28

This returns the natural logarithm of a positive number. The EXP function is the
reverse of this function. Also see LOG10.

Example: LOG(26.28). The script outputs 3.26

Returns the base 10 logarithm of a positive number. Also see LOG.

Example: LOG10(26.28). The script outputs 1.42

The RND function returns a random number from 0 to a maximum value.

Example: RND(100). Outputs a random number from 0 to 100.

43

Trigonometric Functions
ATN – Arctangent Function

COS – Cosinus Function

SIN – Sinus Function

TAN – Tangent Function

Returns the arctangent of a number.

Example: ATN(45). The script outputs 1.548

COS returns the cosine for a number (angle).

Example:COS(45). The script outputs 0.525

The SIN function returns the sine for a number (angle).

Example: SIN(45). The script outputs 0.851

The TAN function returns the tangent for a number (angle).

Example: TAN(45). The script outputs 1.619

44

Operators
Comparison Operators

45

Equal (= or ==)

Greater Than (>)

Less Than (<)

The equal operator is used to assign a value to a variable or vector, or to compare
values.

When used for assignment, a single variable or vector on the left side of the =
operator is given the value determined by one or more variables, vectors, and/or
expressions on the right side. Also, the SET keyword must precede the variable
name when the = operator is used for an assignment:

SET A = 123
SET B = 123
A = B = TRUE

The > operator determines if the first expression is greater-than the second
expression.

Example:

SET A = 124
SET B = 123
A > B = TRUE

The < operator determines if the first expression is less-than the second expression.

Example:

SET A = 123
SET B = 124
A > B = TRUE

46

Greater Than Or Equal To (>= or =>)

Less Than Or Equal To (<= or =<)

The >= operator determines if the first expression is greater-than or equal to the
second expression.

Example:

SET A = 123
SET B = 123
A >= B = TRUE

AND

SET A = 124
SET B = 123
A >= B = TRUE

The <= operator determines if the first expression is less-than or equal to the
second expression.

Example:

SET A = 123
SET B = 123
A <= B = TRUE

AND

SET A = 123
SET B = 124
A <= B = TRUE

47

Not Equal (<> or !=)
Both the != and the <> inequality operators determine if the first expression is not
equal to the second expression.

Example:

SET A = 123
SET B = 124
A != B = TRUE

48

Logical Operators

49

AND(&&)

EQV(&)

The AND operator is used to perform a logical conjunction on two expressions,
where the expressions are Null, or are of Boolean subtype and have a value of True
or False.

The AND operator can also be used as a «bitwise operator» to make a bit-by-
bit comparison of two integers. If both bits in the comparison are 1, then a 1 is
returned. Otherwise, a 0 is returned.

When using the AND to compare Boolean expressions, the order of the expressions
is not important.

Example:

(TRUE = TRUE AND FALSE = FALSE) = TRUE

AND

(TRUE = TRUE AND FALSE = TRUE) = FALSE

The EQV operator is used to perform a logical comparison on two expressions (i.e.,
are the two expressions identical), where the expressions are Null, or are of Boolean
subtype and have a value of True or False.

The EQV operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If both bits in the comparison are the same (both are
0›s or 1›s), then a 1 is returned. Otherwise, a 0 is returned.

The order of the expressions in the comparison is not important.

Example:

TRUE EQV TRUE = TRUE

AND

TRUE EQV FALSE = FALSE

50

MOD

NOT

The MOD operator divides two numbers and returns the remainder. In the example
below, 5 divides into 21, 4 times with a remainder of 1.

Example:

21 MOD 5 = 1 AND 22 MOD 5 = 2

The NOT operator is used to perform a logical negation on an expression. The
expression must be of Boolean subtype and have a value of True or False. This
operator causes a True expression to become False, and a False expression to
become True.

Example:

NOT (TRUE = FALSE) = TRUE

AND

NOT (TRUE = TRUE) = FALSE

51

OR(||)

XOR(|)

The OR operator is used to perform a logical disjunction on two expressions, where
the expressions are Null, or are of Boolean subtype and have a value of True or
False.

The OR operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If one or both bits in the comparison are 1, then a 1 is
returned. Otherwise, a 0 is returned.

When using the OR to compare Boolean expressions, the order of the expressions
is important.

Example:

(TRUE = TRUE OR TRUE = FALSE) = TRUE

AND

(FALSE = TRUE OR TRUE = FALSE) = FALSE

The XOR operator is used to perform a logical exclusion on two expressions, where
the expressions are Null, or are of Boolean subtype and have a value of True or
False.

The XOR operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If both bits are the same in the comparison (both are
0›s or 1›s), then a 0 is returned. Otherwise, a 1 is returned.

Example:

(TRUE XOR FALSE) = TRUE

AND

(FALSE XOR FALSE) = FALSE

52

Mathematical Operators

53

Addition operator (+)

Division operator (/ \)

Subtraction operator (-)

Multiplication operator (*)

Power operator(^)

Performs addition of n number of vectors: Vector1 + Vector 2+ .. + Vectorn

Performs division of n number of vectors: Vector1/ Vector2/ .. + Vectorn

Performs subtraction of n number of vectors: Vector 1- Vector2- ..-Vectorn

Performs multiplication of n number of vectors: Vector1* Vector2* ..*Vectorn

Rises a number to a power: 2^3 = 2*2*2 = 8

54

Moving Averages

55

Introduction

Moving Averages List

Moving averages are the foundation of quantitative technical analysis. These
functions calculate averages or variations of averages of the underlying vector.

Many technical indicators rely upon the smoothing features of moving averages as
part of their calculation.

The S-Trader trading platform and the Quant Script engine use no less than nine (9)
Moving Average types. You will find detailed specification sheets for all of them in
the Help section of the S-Trader.

56

Envelopes

57

Introduction

Envelopes List

Certain technical indicators are designed for overlaying on price charts to form
an envelope or band around the underlying price. A change in trend is normally
indicated if the underlying price breaks through one of the bands or retreats after
briefly touching a band. The most popular band indicator is the Bollinger Bands,
developed by stock trader John Bollinger in the early 1980’s. You can find detailed
specification sheets on all envelope studies in the Help section of the S-Trader.

58

Oscillators (Price)

59

Introduction

Price Oscillators List

An oscillator is a technical analysis tool that is banded between two extreme
values and built with the results from a trend indicator for discovering short-term
overbought or oversold conditions. As the value of the oscillator approaches the
upper extreme value, the asset is deemed to be overbought, and, as it approaches
the lower extreme, it is deemed to be oversold. The slope of the oscillator is usually
proportional to the velocity of the move. Likewise, the distance the oscillator moves
up or down is usually proportional to the magnitude of the move. In this section we
will take a look at the Price Oscillators available in the S-Trader and Quant Script
engine. As usual detailed spec sheets for each study can be found in the Help
section of the S-Trader.

60

61

Oscillators - Money Flow

62

Introduction

Money Flow Oscillators List

As said before, an oscillator is a technical analysis tool that is banded between two
extreme values and built with the results from a trend indicator for discovering
short-term overbought or oversold conditions. As the value of the oscillator
approaches the upper extreme value, the asset is deemed to be overbought, and,
as it approaches the lower extreme, it is deemed to be oversold. The slope of the
oscillator is usually proportional to the velocity of the price move. Likewise, the
distance the oscillator moves up or down is usually proportional to the magnitude
of the move. In this section we will take a look at the oscillators that measure
money flow, i.e. volume and volume momentum. As usual detailed spec sheets for
each study can be found in the Help section of the S-Trader.

63

Trend Indicators

64

Introduction

Trend Indicators List

As their name reveals, trend indicators measure the direction and intensity of
price trends. They are exceptionally important in separating trending phases of
the market from non-trending ones which is perhaps one of the most important
distinction to make when deciding how to approach and model market risk and
market opportunity. As usual detailed spec sheets for each study can be found in
the Help section of the S-Trader.

65

Volatility Indicators

66

Introduction

Volatility Indicators List

Volatility is the one coin whose two sides represent what is significant about
financial markets, i.e. opportunity and risk. As usual detailed spec sheets for each
volatility study can be found in the Help section of the S-Trader.

67

Statistical Functions

68

Introduction

Statistical Functions List

A statistic (singular) or sample statistic is a single measure of some attribute of
a sample (e.g., its arithmetic mean value). It is calculated by applying a function
(statistical algorithm) to the values of the items of the sample, which are known
together as a set of data.

Descriptive statistics are used to describe the basic features of the data in a study.
They provide simple summaries about the sample and the measures. Together
with simple graphics analysis, they form the basis of virtually every quantitative
analysis of data.

Descriptive statistics are typically distinguished from inferential statistics. With
descriptive statistics you are simply describing what is or what the data shows.
With inferential statistics, you are trying to reach conclusions that extend beyond
the immediate data alone.

Current Quant Script capabilities pertain to descriptive statistics. Inferential
statistics capabilities are planned in future versions of the S-Trader application.

69

Relative Strength Functions List

Relative Strength Functions

This function returns the ratio between Vector 1 and Vector 2.

70

General Indicator Functions

71

Candlesticks Patterns
What is a ‹Candlestick›
A candlestick is a chart that displays the high, low, opening and closing prices of
a security for a specific time frame (i.e. 1 hour, 1 day, etc) over a specific period of
time. The wide part of the candlestick is called the «real body» and tells investors
whether the closing price was higher or lower than the opening price. Black/red
indicates that the stock closed lower and white/green indicates that the stock
closed higher.

The candlestick›s shadows show the day›s high and low and how they compare to
the open and close. A candlestick›s shape varies based on the relationship between
the day›s high, low, opening and closing prices.

Candlesticks reflect the impact of investor sentiment on security prices and are
used by technical analysts to determine when to enter and exit trades. Candlestick
charting is based on a technique developed in Japan in the 1700s for tracking the
price of rice. Candlesticks are a suitable technique for trading any liquid financial
asset such as stocks, foreign exchange and futures.

Long white/green candlesticks indicate there is strong buying pressure; this
typically indicates price is bullish, however, they should be looked at in the context
of the market structure as opposed to individually. For example, a long white candle
is likely to have more significance if it forms at a major price support level. Long
black/red candlesticks indicate there is significant selling pressure. This suggests
the price is bearish. A common bullish candlestick reversal pattern, referred to as a
hammer, forms when price moves substantially lower after the open, then rallies
to close near the high. The equivalent bearish candlestick is known as a hanging
man. These candlesticks have a similar appearance to a square lollipop, and are
often used by traders attempting to pick a top or bottom in a market.

72

Candlestick Pattern Function
This function returns a value based on the identified candlestick pattern:

 • LONG_BODY = 1
 • DOJI = 2
 • HAMMER = 3
 • HARAMI = 4
 • STAR = 5
 • DOJI_STAR = 6
 • MORNING_STAR = 7
 • EVENING_STAR = 8
 • PIERCING_LINE = 9
 • BULLISH_ENGULFING_LINE = 10
 • HANGING_MAN = 11
 • DARK_CLOUD_COVER = 12
 • BEARISH_ENGULFING_LINE = 13
 • BEARISH_DOJI_STAR = 14
 • BEARISH_SHOOTING_STAR = 15
 • SPINNING_TOPS = 16
 • HARAMI_CROSS = 17
 • BULLISH_TRISTAR = 18
 • THREE_WHITE_SOLDIERS = 19
 • THREE_BLACK_CROWS = 20
 • ABANDONED_BABY = 21
 • BULLISH_UPSIDE_GAP = 22
 • BULLISH_HAMMER = 23
 • BULLISH_KICKING = 24
 • BEARISH_KICKING = 25
 • BEARISH_BELT_HOLD = 26
 • BULLISH_BELT_HOLD = 27
 • BEARISH_TWO_CROWS = 28
 • BULLISH_MATCHING_LOW = 29

73

SVA Equity Valuation Functions

74

Introduction

SVA Functions List

Structural Valuation Analysis (SVA) was first detailed by Dr. Verne Atrill in his
manuscript, How All Economies Work, and has since been refined into an investment
research system by the Strategic Analysis Corporation (SAC).

The key to using SVA is the understanding that the stock market is broken into
a spectrum of “valuation zones”. That is to say, the stock market does not treat
the valuation process as a continuum, but as a spectrum. These valuation zones
are bounded by Breakpoints, which correspond to fixed multiples of an entity’s
adjusted book value per share, referred to as the Normal Price. These multiples
have their origin in Dr. Atrill’s theory of Accounting Dynamics, which explored how
physical constants emerge to govern the financial structure of a firm. Zones are
characterized by entity stability, risk, and investor expectations. At the Breakpoints,
there is a natural tendency for prices to be turned back, thereby providing signals
for optimal buying and selling points.

For the SVA Function, the Breakpoints are:

High Bubble 8 	 HB8	 	 Growth 	G
High Bubble 7 	 HB7	 	 High Conservation	 HC
High Bubble 6 	 HB6	 	 High-Mid 	 HM
High Bubble 5 	 HB5	 	 Normal 	 N
High Bubble 4 	 HB4	 	 Low-Mid 	 LM
High Bubble 3 	 HB3	 	 Low Conservation 	 LC
High Bubble 2 	 HB2	 	 Blue 	 BL
High Bubble 1 	 HB1	 	 Deep Blue 1	 DB1
Bubble 	 BB	 	 Deep Blue 2	 DB2
Mid Super Growth 	 MSG	 	 Deep Blue 3	 DB3
Low Super Growth	 LSG	 	 Deep Blue 4	 DB4
Super Growth 	 SG	 	 Deep Blue 5	 DB5
Mid-Growth 	 MG	 	 Deep Blue 6	 DB6

75

The quant script engine allows you to create scripts using either an editor or a
wizard. The editor is typically required in the case of Expert Advisers and Scripted
Alerts and is optional under the Custom Studies.

The custom study script editor is showcased above. You can type code in that dialog
or in any other text editor such as Notepad ++ or Crimson editor and copy / paste
that code in the dialog.

Sample Scripts

76

Sample Custom Study 1 – RSI Histogram

======COPY / PASTE this code inside your code editor

Plotting the difference between a Relative Strength Index from Close for 14
Periods and its 20 Periods Exponential Moving Average

DEFINE RSI variable
SET A = RSI(CLOSE,14)

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFINE RSI Histogram result
SET RESULT = A-B

#DEFINE RSI Histogram inverse result
SET REVERSE_RESULT = (-1)* (RESULT)

This is how the editor would look like:

77

When plotted on a chart, the custom study RSI_Histogram would look like this:

78

Sample Custom Study 2 – RSI Histogram Scoring

Expanding on the previous example, we will now create a custom study that will
return +1 when the RSI Histogram is positive and -1 when it is negative.

======COPY / PASTE this code inside your code editor

Plotting +1 if the difference between a Relative Strength Index from Close for
14 Periods and its 20 Periods Exponential Moving Average is positive and -1 if it is
negative

DEFINE RSI variable
SET A = RSI(CLOSE,14)

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFINE RSI Histogram
SET RSIHISTO = A-B

#DEFINE RSI Histogram Score result
SET RESULT = IF(RSIHISTO>0, 1, IF(RSIHISTO<0, (-1), 0))

#DEFINE RSI Histogram Score inverse result
SET REVERSE_RESULT = (-1)*(RESULT)

79

This is how the editor would look like:

When plotted on a chart, the custom study RSI_Histogram_Score would look
like this:

80

Sample Custom Study 3 – RSI Histogram days since turning positive
and negative

Expanding on the previous two examples, we will now create a custom study that
will return the number of periods since the RSI_Histogram last crossed into positive
and the number of days since it last crossed into negative.

======COPY / PASTE this code inside your code editor

Plotting periods since positive or negative cross for RSI Histogram

DEFINE RSI variable
SET A = RSI(CLOSE,14)

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFINE RSI Histogram
SET RSIHISTO = A-B

#DEFINE CROSS ABOVE ZERO
SET ABOVEZERO = RSIHISTO > 0 AND REF(RSIHISTO, 1)<0

#DEFINE CROSS BELOW ZERO
SET BELOWZERO = RSIHISTO < 0 AND REF(RSIHISTO, 1)>0

#DEFINE PERIODS SINCE POSITIVE CROSS RESULT
SET RESULT = LASTIF(ABOVEZERO)

#DEFINE PERIODS SINCE NEGATIVE DAYS RESULT
SET REVERSE_RESULT = LASTIF(BELOWZERO)

81

This is how the editor would look like:

 When plotted on a chart, the custom study PER_SINCE_RSI_HISTO would look like
this:

82

Using the Script Wizard

Sample Custom Study 4 – RSI Histogram by Script Wizard

The exact same scripts built by the code editor above can be built using the Script
Wizard. You would go and create the script line by line, choosing the right function
from its group, setting the desired arguments and pressing the “Create Script Line”
button.

83

SET A = RSI (CLOSE, 14)

SET B = EMA (A, 20)

84

SET RESULT = A-B

SET RE SET REVERSE_RESULT = (-1)*(RESULT) SULT = A-B

85

Your Script Wizard Custom Study looks like this:

86

When plotted on a chart, the custom study RSI_HISTO_WIZARD would look like
this:

87

If compared to the equivalent custom study built by editor, you will notice the values
are identical:

88

There are many uses for Quant Script inside the S-Trader application. Below we are
giving you a couple of sample uses to show you how powerful Quant Script really is.

Using Quant Script in the S-Trader

Custom Studies

Build Custom Studies by Code Editor

89

Build Custom Studies by Code Wizard

Plot Custom Studies on charts

90

If you are willing to plot only one function, i.e. RESULT, then set your Custom Study
as such. This is only advisable for the Custom Studies you plan to use on charts

Plot Custom Studies on charts – RESULT function only

91

92

Custom studies can be nested, i.e. used as vectors, inside a lot of other built-in
function. In the examples below you see an Exponential moving average and a
Bollinger Band indicator plotted on the RSI_HISTOGRAM Custom Study built by
Code Editor and Code Wizard, respectively.

Nest Custom Studies inside other Built-in Studies

93

You can calculate any script for any time frame and see its on-the-fly result updated
in real time by choosing to run it inside watch list columns:

Run Custom Studies inside Watch List columns

94

You can use Custom Studies inside Portfolio Systems to build matrices and Relative
Strength numbers for any portfolio in any time frame:

Use Custom Studies inside Portfolio Systems

95

Essentially this gives you an opportunity to evaluate universe of investments
according to your preferred formulas and algorithms, for any desired list of
instruments or securities over any time frame you want.

96

Use Custom Studies inside Loop Trading Systems for validation of customized
trading algorithms inside totally flexible binomial tree logical sequences;

One of the things you can do with expert advisers is visually plot occurrences of
certain events on charts. You can, for instance, set trend filters to color your bars
with specific colors:

Use Custom Studies inside Loop Systems

Expert Advisers
Build filters or triggers to plot on charts

97

You can also set trend filters to plot at the bottom of the chart as a banner:

98

Finally, you can place symbols on charts to illustrate occurrence of events such as
crossovers:

99

If you want to see the frequency of occurrence of certain events over a specific bar
count, you can run a Consensus Report based on any Expert Advisor:

Consensus Reports

100

Build any simple “Long / Short / Exit Long / Exit Short” algorithms with total
flexibility and analyze the results over extended period of time:

The exact same way you can choose to run live algorithms you are comfortable
with.

Scripted Alerts
Back-test & Live Run

