5>

/
Quant Script™

Q5 Quant Script™

Service Disclaimer

This manual was written for use with the QuantScriptTM programming language. This
manual and the product described in it are copyrighted, with all rights reserved. This
manual and the QuantScriptTM outputs (charts, images, data, market quotes, and other
features belonging to the product) may not be copied, except as otherwise provided in
your license or as expressly permitted in writing by S-Trader.com and/or its development
partners.

Export of this technology may be controlled by the United States Government and/
or the Canadian Government. Diversion contrary to U.S. and/or Canadian law prohibited.
Copyright © 2018 - 2004 by S-Trader.com. All rights reserved. All trademarks and service
marks are the property of their respective owners. Use of the QuantScriptTM product
and other services accompanying your license and its documentation are governed
by the terms set forth in your license. Such use is at your sole risk. The service and its
documentation (including this manual) are provided «AS IS» and without warranty of any
kind.

S-Trader.com, its development partners AND ITS LICENSORS (HEREINAFTER
COLLECTIVELY REFERRED TO AS “S-TRADER") EXPRESSLY DISCLAIM ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND AGAINST
INFRINGEMENT. WHILE WE MAKE AN EFFORT TO ENSURE THE BEST QUALITY OF
SERVICE POSSIBLE, S-TRADER DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SERVICE WILL MEET YOUR REQUIREMENTS, OR THAT THE OPERATION OF THE
SERVICE WILLBE UNINTERRUPTED OR ERROR-FREE, OR THAT DEFECTSIN THE SERVICE
OR ERRORS IN THE DATA WILL BE CORRECTED. FURTHERMORE, S-TRADER DOES NOT
WARRANT OR MAKE ANY REPRESENTATIONS REGARDING THE USE OR THE RESULTS OF
THE USE OF THE SERVICE OR ITS DOCUMENTATION IN TERMS OF THEIR CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE. NO ORAL OR WRITTEN INFORMATION OR
ADVICE GIVEN BY S-TRADER OR AN S-TRADER AUTHORIZED REPRESENTATIVE SHALL
CREATE A WARRANTY OR IN ANY WAY INCREASE THE SCOPE OF THIS WARRANTY.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES,
SO THE ABOVE EXCLUSION MAY NOT APPLY. UNDER NO CIRCUMSTANCES INCLUDING
NEGLIGENCE, SHALL S-TRADER, ITS LICENSORS OR THEIR DIRECTORS, OFFICERS,
EMPLOYEES OR AGENTS BE LIABLE FOR ANY INCIDENTAL, SPECIAL OR CONSEQUENTIAL
DAMAGES (INCLUDING DAMAGES FOR LOSS OF BUSINESS, LOSS OF PROFITS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION AND THE LIKE) ARISING OUT OF
THE USE OR THE INABILITY TO USE THE SERVICE OR ITS DOCUMENTATION, EVEN IF
S-TRADER OR AN S-TRADER AUTHORIZED REPRESENTATIVE HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. SOME JURISDICTIONS DO NOT ALLOW
THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES SO THE ABOVE LIMITATION OR EXCLUSION MAY NOT APPLY. In no event shall
S-TRADER's total liability to you for all damages, losses, and causes of action (whether in
contract, tort, including negligence, or otherwise) exceed the monthly lease fee paid for
the product and its documentation.

Trading Disclaimer

No offer or solicitation to buy or sell cash or derivative securities, including but not
limited to futures, options or options on futures is being made. The service is not and
should thus not be construed as trading or investment advice and no recommendation
or strategy is being made, given or in any manner endorsed by S-TRADER or any of its
affiliates, partners, employees or developing partners. Past performance, whether actual
or indicated by historical tests of strategies, is no guarantee of future performance or
success. Active trading is generally not appropriate for someone of limited resources,
limited investment or trading experience, or low-risk tolerance, or who does not have
capital to risk. There is a risk of loss in stock, futures and forex trading. Market data may
be delayed or unavailable at times due to system and software errors, Internet traffic,
outages and other factors. Trading carries a high level of risk and may not be suitable for
all investors. There is a possibility that you may sustain a loss equal to or greater than
your entire investment; therefore, you should not invest or risk money that you cannot
afford to lose. You should be aware of all risks associated with trading your particular
markets and products.

Special Thanks

Thanks to all the users and testers of QuantScriptTM, whose suggestions have made it a
much better programming language than it would have otherwise been.

Contents

HOW THIS GUIDE IS ORGANIZED
PREREQUISITES

The Quant Script Programming Language
Introduction

Important Concepts

Boolean Logic

Program Structure

Functions

Vector Programming

The REF Function

The TREND Function

Price Gaps and Volatility

Equity Valuation (SVA) Functions

Technical Analysis
Crossovers

Key Reversal Script
Primitive Functions & Operators
Primitives

Logical Operator Primitives
COUNTIF Function

LASTIF Function

“IF" Conditional Function
Extremes Primitives

HHV Function

LLV Function

MAX Function

MAXOF Function

MIN Function

MINOF Function
Summation Primitives

CUM Function

CUMS Function

SUM Function

SUMIF Function

Trend Primitives
CROSSOVER

LOOP Function

REF Function

TREND

Math Functions
Introduction

Algebraic Functions

ABS - Absolute Value Function
EXP — Exponential Function
LOG - Logarithmic Function
LOG10 - Log of 10 Function

RND - Random Function

Trigonometric Functions

ATN - Arctangent Function
COS - Cosinus Function
SIN - Sinus Function

TAN - Tangent Function

Operators

Comparison Operators

Equal (= or ==

Greater Than (>)

Less Than (<)

Greater Than Or Equal To (>= or =>)
Less Than Or Equal To (<= or =<)
Not Equal (<> or !=)

Logical Operators

AND(&&)

EQV(&)

MOD

NOT

OR(]I)

XORY(])

Mathematical Operators
Addition operator (+)

Division operator (/\)
Multiplication operator (*)

Subtraction operator (-)

Power operator()

Moving Averages
Introduction

Moving Averages List
Envelopes
Introduction

Envelopes List

Oscillators (Price)
Introduction

Price Oscillators List
Oscillators - Money Flow
Introduction

Money Flow Oscillators List
Trend Indicators
Introduction

Trend Indicators List
Volatility Indicators
Introduction

Volatility Indicators List
Statistical Functions
Introduction

Statistical Functions List

Relative Strength Functions

Relative Strength Functions List

General Indicator Functions

Candlesticks Patterns

What is a <Candlestick>

Candlestick Pattern Function

SVA Equity Valuation Functions

Introduction

Sample Scripts

Sample Custom Study 1 — RSI Histogram
Sample Custom Study 2 — RSI Histogram Scoring

Sample Custom Study 3 — RSI Histogram days since turning positive and negative

Using the Script Wizard

Sample Custom Study 4 — RSI Histogram by Script Wizard
Using Quant Script in the S-Trader

Custom Studies

Build Custom Studies by Code Editor

Build Custom Studies by Code Wizard

Plot Custom Studies on charts

Plot Custom Studies on charts — RESULT function only
Nest Custom Studies inside other Built-in Studies

Run Custom Studies inside Watch List columns

Use Custom Studies inside Portfolio Systems

Use Custom Studies inside Loop Systems

Expert Advisers

Build filters or triggers to plot on charts

Consensus Reports
Scripted Alerts
Back-test & Live Run

HOW THIS GUIDE IS ORGANIZED

Chapters 1 through 4 of this guide contain references to the core functions used
in performing common, basic tasks such as identifying securities within a specific
price range, increasing in volatility, crossing over an indicator and so forth. You can
cut and paste many of these examples right into the Quant Script code editor in
your software.

% Custom Study Editor

Chapters 5 through 13 of this guide contain references to functions, properties,
and constants supported by the Quant Scriptlanguage as well as hands-on trading
system examples. Many of the functions available in Quant Script are also built
in the S-Trader chart component and have detailed spec sheets explaining all
parameters, formulas, long and short-form syntaxes. We also provide samples of
the code editor, code wizard and chart component dialogs.

This method of organization allows the beginner programmer to see results
immediately while learning at his or her own pace.

PREREQUISITES

A basic understanding of technical analysis is the only pre-requisite for using
this programming guide. For a thorough understanding of how to use previously
defined scripts with modules of the S-trader application please consult the S-Trader
application manual or the S-Trader website.

Recommended readings

NEW TORK IWNSTITUTE OF FINAWNCE

The

TECHNICAL E“C-}-"Elctzpedia

o)

ANALYSIS [
ne FINANCIAL TeChnlcal

MARKETS I l\élarket
:'| |“: m:;Tul.-j*::'.?ll‘._lxh.*ll"lt.;t -!‘I.?IIIIII-IJE';I i n].Cat 3

JOHN]. MURPHY

Complelely updated and erpanded
esition of John L Murphy's Bestseling Clrssic,

Technical Analvsis S I -
of the Futures Markets ROBERT W. COLBY,cMT

PRINCIPLE

FROST and
PRECHTER

INTROTCTION BY

(Farlesq Colling

http://www.s-trader.com/?page_id=11849

The Quant Script Programming Language

Introduction

Quant Scriptis the engine that drives the scripting language in your S-Trader trading
software. It is a non-procedural scientific vector programming language that was
designed specifically for developing trading systems. A script is simply a set of
instructions that tell the Quant Script engine to do something you deem useful,
such as provide an alert when the price of one stock reaches a new high, crosses
over a moving average, or drops by a certain percentage. There are many uses.

EURLISD FXCM = 1, 15421

iy
l |'|| hll‘
"ﬂh“'l,ml.u'

|

by o |

0 I"'||Ih'l I I [
" o

1. VS

1.1 S0

Important Concepts

Quant Script is a powerful and versatile programming language for traders. The
language provides the framework required to build sophisticated trading programs
piece by piece without extensive training or programming experience. Not only can
the Quant Script syntax be mastered with almost no learning curve, the S-Trader
application also allows you to create scripts using a versatile Quant Script \izard.

» Add New Study

% Custom Study Editor

Default
Cistom Study Mame
Password

Result ~

Formula

% Custom Study Wizard

Save To Group Dhef At
Custom Study Name

Password

Regult

Reverse Resull

Add To New Panel |+
Add New Vanable Edit Selected Variable

MHame Description

% Add Variable

Mame

Emvelopes

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Koving Averages

Operator - Comparson
Operator - Logical

Operator - Mathematical
Ozcillators - Money Flow
Cxcillators - Price

Primitive - Extremes
Primitiee - Logical Operators
Primitree - Summation
Primitiwe = Trend

Relatree Stremgth

Statistics

SVA Functions

Create Soript Line
Trend Indicatorns e

The following scriptis a very simple example that identifies markets that are trading
higher than the opening price:

LAST > OPEN

It almost goes without saying that the purpose of this script is to identify when the
last price is trading higher than the open price. It is nearly as plain as English.

Just as a spoken language gives you many ways to express each idea, the Quant
Script programming language provides a wide variety of ways to program a trading
system. Scripts can be very simple as just shown in the example above or extremely
complex, consisting of many hundreds of lines of instructions. For most systems,
individual scripts usually consist of just a few lines of code. Scripts can be further
combined and utilized in unique ways using the existing S-Trader infrastructure
and modules to create the most powerful trading systems or trade supporting
elements you can imagine.

The examples outlined in the first section of this guide are relatively short and

simple but provide a solid foundation for the development of more complex scripts.

Boolean Logic

The scripts shown in this first section may be linked together using Boolean logic
just by adding the AND or the OR keyword. For example :

Script 1 evaluates to TRUE when the last price is higher than the open price:

LAST > OPEN

Script 2 evaluates to TRUE when volume is two times the previous period’s volume:
VOLUME >REF(VOLUME, 1) * 2

You can aggregate scripts so that your script returns results for securities that are
higher than the open and with the volume two times the previous volume:

LAST > OPEN AND VOLUME >REF(VOLUME, 1) * 2

Likewise, you can change the AND into an OR to find securities that are either
trading higher than the open or have a volume two times the previous volume:

LAST > OPEN OR VOLUME >REF(VOLUME, 1) * 2

Once again, the instructions are nearly as plain as the English language. The use of
Boolean logic with the AND and OR keywords is a very important concept that is
used extensively by the Quant Script programming language.

Program Structure

It does not matter if your code is all on a single line or on multiple lines. It is often
easier to read a script where the code is broken into multiple lines. The following
script will work exactly as the previous example, but is somewhat easier to read:

LAST > OPEN OR
VOLUME >REF(VOLUME, 1) * 2

It is good practice to structure your scripts to make them as intuitive as possible
for future reference. In some cases it may be useful to add comments to a very
complex script. A comment is used to include explanatory remarks in a script.

Whenever the pound sign is placed at the beginning of a line, the script will ignore
the words that follow. The words will only serve as a comment or note to make the
script more understandable:

Evaluates to true when the last price is higher than the open or
LAST > OPEN OR

the volume is 2 X's the previous volume:
VOLUME >REF(VOLUME, 1) * 2

The script runs just as it did before with the only difference being that you can more
easily understand the design and purpose of the script.

It may not be a bad idea to maintain your scripts in TXT files managed by a known
code editor such as NotePad++ or Crimson Editor and then copy the content inside
S-Trader custom study files. Click on the logos below to download the installers.

Create Script Line

The QuantScriptlanguage provides many built-in functions that make programming
easier. When functions are built into the core of a programming language they are
referred to as primitives. The TREND function is one example:

TREND(CLOSE, 30) = UP In this example, the TREND function tells Quant Script to
identify trades where the closing price is in a 30-day uptrend.

The values that are contained inside a function (such as the REF function or the
TREND function) are called arguments. For instance, there are two arguments in
the TREND function.

Argument #17 is the closing price, and argument #2 is 30, as in “30 days"” or “30
periods”.

Only one of two things will occur if you use a function incorrectly:

- Quant Script will automatically fix the problem and the script will still run, or;

- Quant Script will report an error, telling you what's wrong with the script and
allowing you to fix the problem and try again.

In other words, user input errors will never cause QuantScript to break or return
erroneous results without first warning you about a potential problem.

Let's take CLOSE out of the TREND function and then try to run the script again:
SET RESULT = TREND(30)

The following error occurs:
Error: argument of <TREND> function not optional.

% Custom Study Editor

Save To Group Default

Custom Study Mame FORMULA

Histogram -

Formula

SET RESULT = TREND(30)

x Irvvalid script

Error: Argument of function "TREND' not optional.

OK

We are given the option to fix the script and try again.

Vector Programming

Vector programminglanguages (alsoknownasarray or multidimensionallanguages)
generalize operations on scalars to apply transparently to vectors, matrices, and
higher dimensional arrays.

The fundamental idea behind vector programming is that operations apply at once
to an entire set of values (a vector or field). This allows you to think and operate on
whole aggregates of data, without having to resort to explicit loops of individual
scalar operations.

As an example, to calculate a simple moving average based on the median price
of a stock over 30 days, in a traditional programming language such as BASIC you
would be required to write a program similar to this:

For each symbol

For bar = 30 to max

Average =0

For n = bar - 30 to bar

median = (CLOSE + OPEN) / 2

Average = Average + median

Next

MedianAverages(bar) = Average / 30 Next bar
Next symbol

Nine to ten lines of code would be required to create the “MedianAverages” vector.
But with Quant Script, you can effectively accomplish the same thing using only
one line:

SET MedianAverage = SimpleMovingAverage((CLOSE + OPEN) / 2, 30)

And now MedianAverageis actually a new vector that contains the 30-period simple
moving average of the median price of the stock at each point. It is not uncommon
to find array programming language “one-liners” that require more than a couple
of pages of BASIC, Java or C++ code. QuantScript thus allows traders to put their
ideas at work and test them or run them with much less effort.

The REF Function

At this point you may be wondering what “REF” and “TREND" are. These are two of
the very useful primitives that are built into the Quant Script|anguage.

The REF function is used whenever you want to reference a value at any specific
point in a vector. Assume the MedianAverage vector contains the average median
price of a stock. In order to access a particular element in the vector using a
traditional programming language, you would write:

SET A = MedianAverage[n]
Using Quant Script you would write:
SET A = REF(MedianAverage, n)

The main difference other than a variation in syntax is that traditional languages
reference the points in a vector starting from the beginning, or O if the vectors are
zero-based. Quant Script on the other hand references values backwards, from
the end. This is most convenient since the purpose of Quant Script is of course, to
develop trading systems. It is always the last, most recent value that is of most
importance. To get the most recent value in the MedianAverage vector we could
write:

SET A = REF(MedianAverage, 0)
This is the same as not using the REF function at all. Therefore the preferred way
to get the last value (the most recent value) in a vector is to simply write:

SET A = MedianAverage

The last value of a vector is always assumed when the REF function is absent. To
get the value as of one bar ago, we would write:

SET A = REF(MedianAverage, 1)

Or two bars ago: SET A = REF(MedianAverage, 2)

The TREND Function

Traders often refer to “trending” as a state when the price of a stock has been
increasing (up-trending) or decreasing (down-trending) for several days, weeks,
months, or years. The typical investor or trader would avoid opening a new long
position of a stock that has been in a downtrend for many months. Quant Script
provides a primitive function aptly named TREND especially for detecting trends in
stock price, volume, or indicators:

TREND(CLOSE, 30) = UP
This tells Quant Script to identify trades where the closing price is in a 30-period
uptrend. Similarly, you could also use the TREND function to find trends in volume

or technical indicators:

the volume has been in a downtrend for at least 10 periods:
TREND(VOLUME, 10) = DOWN

#the 14-day CMO indicator has been up-trending for at least 20 days:
TREND(CMO(CLOSE, 14), 20) = UP

It is useful to use the TREND function for confirming a trading system signal.
Suppose we have a trading system that buys when the close price crosses above a
20-day Simple Moving Average. The script may look similar to this:

Gives a buy signal when the close price crosses above the 20-day SMA
CROSSOVER(CLOSE, SimpleMovingAverage(CLOSE, 20)) = TRUE

It would be helpful in this case to narrow the script down to only the securities that
have been in a general downtrend for some time. We can add the following line of
code to achieve this:

AND TREND(CLOSE, 40) = DOWN

TREND tells us if a vector has been trending upwards, downwards, or sideways,
but does not tell us the degree of which it has been trending. We can use the REF
function in order to determine the range in which the data has been trending. To
find the change from the most current price and the price 40 bars ago, we could
write:

SET A = LAST - REF(CLOSE, 40)

Price Gaps and Volatility

Although the TREND function can be used for identifying trends and the REF
function can be used for determining the degree to which a stock has moved, it
is often very useful to identify gaps in prices and extreme volume changes, which
may be early indications of a change in trend. We can achieve this by writing:

Returns true when the price has gapped up
LOW >REF(HIGH, 1)

Or:

Returns true when the price has gapped down
HIGH <REF(LOW, 1)

You can further specify a minimum percentage for the price gap:

Returns true when the price has gapped up at least 1%
LOW >REF(HIGH, 1) * 1.01

And with a slight variation we can also check whether the volume is either up or
down by a large margin:

the volume is up 1000%
VOLUME >REF(VOLUME, 1) * 10

Or by the average volume:

the volume is up 1000% over average volume
VOLUME >SimpleMovingAverage(VOLUME, 30) * 10

We can also measure volatility in price or volume by using any one of the built-
in technical indicators such as the Volume Oscillator, Chaikin Volatility Index,
Coefficient of Determination, Price Rate of Change, Historical Volatility Index, etc.
These technical indicators are described in Chapters 512-.

Equity Valuation (SVA) Functions

Unique to the S-Trader platform and the Quant Script engine are the SVA Equity
Valuation functions. SVA stems from Strategic Valuation Analysis and is a suite
of indicators used to determine the intrinsic value and the stability of companies
based on a proprietary balance sheet analysis methodology.

SVA _function(line acronym) / FMV _function() / SR_function()

the Close Price is between Normal and High Mid breakpoints
CLOSE >= SVA_function({N}) AND CLOSE<=SVA _function({HM})

the Stability Ratio has been trending UP
TREND(SR_function(),30) = UP

the Close is below the Fair Market VValue
Close < FMV _function()

Technical Analysis

Quant Script provides many built-in technical analysis functions. Using only a single
line of code you can calculate functions such as Moving Averages, Bollinger Bands,
Directional Movement Index or validate Japanese Candlestick patterns. A complete
list of technical analysis functions is covered in chapters 5 through 13.

The following is a simple example of how to use one of the most common technical
analysis functions, the simple moving average:

LAST > SimpleMovingAverage(CLOSE, 20)

The script will return TRUE if the last price is over the 20-day moving average of
the close price.

The CLOSE variable is actually a vector of closing prices, not just the most recent

close price. You can use the OPEN, HIGH, LOW, CLOSE and VOLUME vectors to
create your own calculated vectors using the SET keyword:

SET Median = (CLOSE + OPEN) / 2

This code creates a vector containing the median price for each trading day. We can
then use the Median vector inside any function that requires a vector:

LAST > SimpleMovingAverage(Median, 20)

This condition will evaluate to TRUE when the last price is greater than a 20-day
moving average of the median price.

Because functions return vectors, functions can also be used as valid arguments
within other functions:

LAST > SimpleMovingAverage(SimpleMovingAverage(CLOSE, 30), 20)

This evaluates to TRUE when the last price is greater than the 20-day moving
average of the 30-day moving average of the close price.

It is much better, however, to first initialize the functions you want to use as
arguments:

SET A = SimpleMovingAverage(CLOSE, 30)
SET RESULT = LAST > SimpleMovingAverage(A, 20)

Please note that many technical indicator names are quite long, therefore function
abbreviations have been conveniently provided.

Long name, i.e. long-form function: SimpleMovingAverage(CLOSE, 30)
Abbreviated name, i.e. short-form function: SMA(CLOSE, 30)

SMA is the same function as SimpleMovingAverage and both methods work the
same way. You will note each function has a long-form and a short-form Quant
Script syntax.

Crossovers

You may be familiar with the term “crossover”, which is what happens when one
series crosses over the top of another series as depicted in the image below.
Many technical indicators such as the MACD for example, have a “signal line". A buy
or sell signal is generated when the signal line crosses over or under the technical
indicator.

The CROSSOVER function helps you identify when one series has crossed over
another.

For example, we can find the exact point in time when one moving average
crossed over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)
SET MA2 = SimpleMovingAverage(CLOSE, 14)

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to TRUE when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:

CROSSOVER(MA2, MA1) = TRUE

This would be equivalent to writing:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

MA1 > MA2 AND REF(MA1,1) < REF(MA2, 1)

Key Reversal Script

Finally, before we move into the technical reference section of this guide let's create
a script that finds Key Reversals, so that you can see firsthand how Quant Script
can be used to create trading systems based upon complex rules. The definition of
a Key Reversal is that after an uptrend, the open must be above the previous close,
the most current bar must make a new high, and the last price must be below the
previous low. Let’s translate that into script form:

#First make sure that the stock is in an uptrend
TREND(CLOSE, 30) = UP

#The open must be above yesterday’s close
AND OPEN >REF(CLOSE, 1)

#Today must be making a new high
AND HIGH >= REF(HIGH, 1)

And the last price must be below yesterday's low
AND LAST <REF(LOW, 1)

Ironically, the script minus comments is actually shorter than the English definition
of this trading system. Key Reversals do not occur frequently but they are very
reliable when they do occur. You can experiment by removing the line AND HIGH
>= REF(HIGH,1), or you can replace it with other criteria. This script can also be
reversed:

#First make sure that the stock is in a downtrend
TREND(CLOSE, 30) = DOWN

#The open must be below yesterday's close
AND OPEN <REF(CLOSE, 1)

#Today must be making a new low
AND LOW <= REF(LOW,1)

And the last price must be above yesterday’s high
AND LAST >REF(HIGH, 1)

Again, the signal seldom occurs but is very reliable when it does.

Primitive Functions & Operators
Primitives

This chapter covers the core functions of Quant Script, also known as primitives.
These important functions define the Quant Script programming language and
provide the basic framework required to build complex trading systems from the
ground up.

Literally any type of trading system can be developed using the Quant Script
programming language with minimal effort. If a system can be expressed in
mathematical terms or programmed in any structured, procedural language such
as C++, VB, or Java for example, you can rest assured that the same formulas can
also be programmed using the Quant Script programming language.

Sometimes technical analysis formulas can be very complex. For example,
technicalanalysis functions exist thatrequirerecursive calculations and complicated
IF — Then - ELSE structures as part of their formula. These complex trading systems
are traditionally developed in a low level programming language but most if not all
of them can also be developed using Quant Script. \We have successfully built such
scripts consisting of many hundreds of lines and have successfully ran them live
on tick charts.

This chapter outlines how Quant Script can be used to perform these same
calculations in @ much simpler way by means of vector operations and simulated
control structure.

Logical Operator Primitives

% Add Variable

MName

Description

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages

Operator - Comparison
Operator - Logical

Operator - Mathematical
Oscillators - Money Flow
Oscillators - Price

Primitive - Extremes

h v v v v 99T T T T

Primitive - Logical Operators
Countif
If
Lastif
Primitive - Summation
Primitive - Trend
Relative Strength
Statistics Create Script Line

COUNTIF Function
COUNTIF(Condition)

Returns a vector representing the total number of times the specified condition
evaluated to TRUE.

Example:

SET RESULT = COUNTIF(CROSSOVER(SimpleMovingAverage(CLOSE, 14), CLOSE))

The script returns a vector with increasing values expressing the number of times
the 14-day Simple Moving Average crossed over the closing price.

LASTIF Function
LASTIF(Condition)
Similar to COUNTIF, except LASTIF returns a vector containing the number of

periods since the last time the specified condition evaluated to TRUE. The count is
reset to zero each time the condition evaluates to TRUE.

Example:

SET RESULT = LASTIF(CLOSE < REF(CLOSE, 1))

The script returns a vector that increases in value for each bar where the closing
price was not less than the previous closing price. When the condition evaluates

to TRUE, meaning the closing price was less than the previous closing price, the
reference count is reset to zero.

“IF" Conditional Function
IF(Condition, True part, False part)

The conditional “IF” function allows you to design complex Boolean logic filters.
Example:

If you paste the following script into the Script area in your trading software
application, you will see a column of numbers that oscillate between 1 and -1,
depending on when the closing price is greater than the opening price:

SET A = IF(CLOSE > OPEN, 1, -1)

- The first argument of the “IF” function is a logical test.

- The second argument is the value that will be used if the condition evaluates to
TRUE.

- Conversely, the third argument is the value that will be used if the condition
evaluates to FALSE.

The logical test may be any value or expression that can be evaluated to TRUE
or FALSE. For example, CLOSE = OPEN is a logical expression; if the close price is
the same as the opening price, the expression evaluates to TRUE. Otherwise, the
expression evaluates to FALSE.

Conditional IF functions can be nested, provided the conditions evaluated are
properly initialized:

SET Con1 = (CLOSE>0PEN)
SET Con2 = (CLOSE:HlGH)

SET A = If(Con1, 1, If(Con2, 2, 0))

Extremes Primitives

‘“ Add Variable

MName

Description

Operator - Mathematical
Oscillators - Money Flow
Oscillators - Price
Primitive - Extremes
HHV
HighestHighValue
LLV
LowestLowWalue
Max
MaxOf
Min
Mirf
Primitive - Logical Operators
Primitive - Summation
Primitive - Trend
Relative Strength
Statistics

Create Script Line
SVA Functions P

HHV Function
HighestHighValue(Periods) / HHV/(Periods)

This returns the highest value of the high price over the specified number of periods.

HIGH = HHV(21) evaluates to TRUE when the high is the highest high in the past
21 bars.

LLV Function
LowestLowValue(Periods) / LLV(Periods)

This returns the lowest value of the low price over the specified number of periods.

LOW = LLV(21) evaluates to TRUE when the low is the lowest low in the past 21
bars.

MAX Function
MAX(Vector, Periods)

This returns a vector containing a running maximum, as specified by the Periods
argument. The values represent the maximum value for each window.

MAX(CLOSE, 10) returns a vector of maximum values based on a 10- period
window.

MAXOF Function
MAXOF(Vector1, Vector2, [Vector3]...[Vector8])

This returns a vector containing a maximum value of all specified vectors, for up
to eight vectors. Vector1 and Vector2 are required and vectors 3 through 8 are
optional.

MAXOF(CLOSE, OPEN) returns a vector containing the maximum value for each
bar, which is either the opening price or the closing price in this example.

MIN Function
MIN(Vector, Periods)

This returns a vector containing a running minimum, as specified by the Periods
argument. The values represent the minimum value for each window.

MIN(CLOSE, 10) returns a vector of minimum values based on a 10- period
window.

MINOF Function
MINOF(Vector1, Vector2, [Vector3]...[Vector8])
This returns a vector containing a minimum value of all specified vectors, for up

to eight vectors. VVector1 and Vector2 are required and vectors 3 through 8 are
optional.

MINOF(CLOSE, OPEN) returns a vector containing the minimum value for each bar,
which is either the opening price or the closing price in this example.

Summation Primitives

“w Add Variable

Name

Description

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages

Operator - Comparison
Operator - Logical

Operator - Mathematical
Oscillators - Money Flow
Oscillators - Price

Primitive - Extremes

Primitive - Logical Operators

T O T O T T U T U T O

Primitive - Summation
CUM
CUMS
Sum
Sumif
Primitive - Trend
Relative Strength Create Script Line

CUM Function
CUM(Vector, Periods)

Cummulative(vector, periods)

The CUMMULATIVE function outputs a vector containing arunning sum, as specified
by the Periodsargument.

CUM(Close, 10) outputs the running sum of the past 10 periods closing prices.

CUMS Function
CUMS(Vector)

CummulativeSeries(Vector)

The CUMMULATIVE SERIES function outputs a vector containing a running sum of
the entire series

CUMS(Volume) outputs the running sum of all periods’ volume.

SUM Function
SUM(Vector, Periods)

The SUM function (not to be confused with the SUMIF function) outputs a vector
containing a running sum, as specified by the Periods argument.

SUM(CLOSE, 10) returns a vector of closing price sums based on a 10-period
window.

SUMIF Function
SUMIF(Condition, Vector)

Thisisahybrid betweenan “IF" logical operator primitive and a summation primitive.
This function outputs a running sum of all values in the supplied VVector wherever

the supplied Condition evaluates to TRUE.

For example if we wanted a vector containing the sum of volume for all periods
where the closing price closed up 0.05%, we could write:

SET A = CLOSE > (REF(CLOSE,1)*(1.0005))

SET RESULT = SUMIF(A, VOLUME)

The RESULT will be a vector containing a running sum of volume for each period
where the closing price closed up at least 0.05%.

Trend Primitives

‘W Add Variable

Mame

Description

Operator - Comparison
Operator - Logical

Operator - Mathematical
Oscillators - Money Flow
Oscillators - Price

Primitive - Extremes
Primitive - Logical Operators

Primitive - Summation

h T v v vovewTow

Primitive - Trend
Crossover
Loop
Ref
Trend

Relative Strength

Statistics

SVA Functions

Trend Indicators

Create Script Line
Volatility

CROSSOVER
CROSSOVER(Vector1, Vector2) = TRUE / FALSE

Many technical indicators such as the MACD for example, have a “signal line”,
Traditionally a buy or sell signal is generated when the signal line crosses over or
under the technical indicator.

The CROSSOVER function helps you when one series has crossed over another.
For example, we can find the exact point in time when one moving average crossed
over another by using the CROSSOVER function:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

CROSSOVER(MA1, MA2) = TRUE

The script above will evaluate to TRUE when the MA1 vector most recently crossed
over the MA2 vector. And we can reverse the script to the MA1 vector crossed
below the MA2 vector:

CROSSOVER(MA2, MA1) = TRUE

A different way to write this script would be:

SET MA1 = SimpleMovingAverage(CLOSE, 28)

SET MA2 = SimpleMovingAverage(CLOSE, 14)

MA1 > MA2 AND REF(MA1,1)<REF(MA2,1)

LOOP Function
LOOP(Vector1, Vector2, Offset1, Offset2, Operator)

LOOP provides simulated control structure by means of a single function call.

Vector1 is the vector to initialize the calculation from. Offset1 is the offset where
values are referenced in Vector1 for the incremental calculation, and Offset2 is the
offset where values are referenced from in Vector2.

Example 1:

LOOP(Vector1, Vector2, 1, 2, Multiply) is a series that can only be calculated from
index number 3 and each term results by multiplying a 1 period offset Vector 1
value with a 2 period offset Vector 2 value.

VVector 1 Vector 2

1.25
2.25
3.25
4.25
5.25
6.25
7.25

REF Function
REF(Vector, Periods)

By default all calculations are performed on the last, most recent value of a vector.
The following script evaluates to TRUE when the last open price (the current bar’s
open price) is less than $30:

OPEN < 30

OPEN is assumed to be the current bar's open by default. You can reference a
previous value of a vector by using the REF function:

REF(OPEN, 1) < 30

And now the script will evaluate whether previous bar’s open price was less than
$30. The number 1 (the second argument) tells the REF function to reference values
as of one bar ago. To reference values two bars ago, simply use 2 instead of 1. The
valid range for the Periods argumentis 1 - 250 unless otherwise noted.

TREND

TREND(Vector)

The TREND function can be used to determine if data is trending upwards,
downwards, or sideways. This function can be used on the price (open, high, low,

close), volume, or any other vector. The TREND function returns a constant of either
UP, DOWN or SIDEWAYS.

Example: TREND(CLOSE) = UP AND TREND(VOLUME) = DOWN

TREND is often the first function used as a means of filtering securities that are not
trending in the desired direction.

Math Functions

Introduction

Note that all math functions return a vector. For example ABS(CLOSE - OPEN)
returns a vector of the ABS value of CLOSE - OPEN (one record per bar). The RND
function returns a vector of random values, one for each bar, and so forth.

‘% Add Variable

Name

Description

Emelopes
P General Indicator Functions
Math Function - Algebraic
Abs
Exp
Log
Log10
Rnd

Wath Function - Trigonometric

Moving Averages

b Operator - Comparison
Operator - Logical
Operator - Mathematical
Oscillators - Monev Flow

Create Script Line

Algebraic Functions

ABS - Absolute Value Function

The ABS function returns the absolute value for a number. Negative numbers
become positive and positive numbers remain positive.

Example: ABS(CLOSE - OPEN). The script always evaluates to a positive number,

even if the opening price is greater than the closing price.

EXP - Exponential Function

EXP raises e to the power of a number. The LOG function is the inverse of this
function.

Example: EXP(3.26). The script outputs 26.28

LOG - Logarithmic Function

This returns the natural logarithm of a positive number. The EXP function is the
reverse of this function. Also see LOG10.

Example: LOG(26.28). The script outputs 3.26
LOG10 - Log of 10 Function
Returns the base 10 logarithm of a positive number. Also see LOG.

Example: LOG10(26.28). The script outputs 1.42

RND - Random Function

The RND function returns a random number from O to a maximum value.

Example: RND(100). Outputs a random number from O to 100.

Trigonometric Functions

ATN - Arctangent Function

Returns the arctangent of a number.

Example: ATN(45). The script outputs 1.548

COS - Cosinus Function

COS returns the cosine for a number (angle).

Example:COS(45). The script outputs 0.525

SIN - Sinus Function

The SIN function returns the sine for a number (angle).

Example: SIN(45). The script outputs 0.851

TAN - Tangent Function

The TAN function returns the tangent for a number (angle).

Example: TAN(45). The script outputs 1.619

Operators

Comparison Operators

W Add Variable

Name

Description

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages

Operator - Comparison

P Operator - Logical
P Operator - Mathematical

P Oscillators - Money Flow Create Script Line

Equal (= or ==

The equal operator is used to assign a value to a variable or vector, or to compare
values.

When used for assignment, a single variable or vector on the left side of the =
operator is given the value determined by one or more variables, vectors, and/or
expressions on the right side. Also, the SET keyword must precede the variable
name when the = operator is used for an assignment:

SETA =123
SETB =123
A=B=TRUE

Greater Than (>)

The > operator determines if the first expression is greater-than the second
expression.

Example:

SETA =124
SETB =123
A>B=TRUE

Less Than (<)

The < operator determinesif the first expressionis less-than the second expression.
Example:
SETA =123

SETB =124
A>B=TRUE

Greater Than Or Equal To (>= or =>)

The >= operator determines if the first expression is greater-than or equal to the
second expression.

Example:

SETA=123
SETB =123
A >=B =TRUE

AND

SETA =124
SETB =123
A >=B =TRUE

Less Than Or Equal To (<= or =<)

The <= operator determines if the first expression is less-than or equal to the
second expression.

Example:
SETA=123
SETB=123

A <= B =TRUE
AND

SETA=123
SETB =124
A<=B=TRUE

Not Equal (<> or !=)

Both the = and the <> inequality operators determine if the first expression is not
equal to the second expression.

Example:

SETA =123
SETB =124
A!=B =TRUE

Logical Operators

“ Add Variable

Name

Description

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages
Operator - Comparison
Operator - Logical

&

Bl

AND
EQV
MNOT
OR
XOR
b Operator - Mathematical

P Oscillators - Money Flow Create Script Line

AND(&&)

The AND operator is used to perform a logical conjunction on two expressions,
where the expressions are Null, or are of Boolean subtype and have a value of True
or False.

The AND operator can also be used as a «bitwise operator» to make a bit-by-
bit comparison of two integers. If both bits in the comparison are 1, then a 1 is
returned. Otherwise, a O is returned.

When using the AND to compare Boolean expressions, the order of the expressions
Isnotimportant.

Example:
(TRUE = TRUE AND FALSE = FALSE) = TRUE
AND

(TRUE = TRUE AND FALSE = TRUE) = FALSE

EQV(&)

The EQV operator is used to perform a logical comparison on two expressions (i.e.,
are the two expressions identical), where the expressions are Null, or are of Boolean
subtype and have a value of True or False.

The EQV operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If both bits in the comparison are the same (both are
0ss or 1>s), then a 1 is returned. Otherwise, a 0 is returned.

The order of the expressions in the comparison is not important.

Example:

TRUE EQV TRUE = TRUE

AND

TRUE EQV FALSE = FALSE

MOD

The MOD operator divides two numbers and returns the remainder. In the example
below, 5 divides into 21, 4 times with a remainder of 1.

Example:

21MOD5=1AND 22 MOD5=2

NOT

The NOT operator is used to perform a logical negation on an expression. The
expression must be of Boolean subtype and have a value of True or False. This
operator causes a True expression to become False, and a False expression to
become True.

Example:

NOT (TRUE = FALSE) = TRUE
AND

NOT (TRUE = TRUE) = FALSE

OR(]])

The OR operator is used to perform a logical disjunction on two expressions, where
the expressions are Null, or are of Boolean subtype and have a value of True or
False.

The OR operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If one or both bits in the comparison are 1, thena 1is
returned. Otherwise, a O is returned.

When using the OR to compare Boolean expressions, the order of the expressions
is important.

Example:
(TRUE = TRUE OR TRUE = FALSE) = TRUE
AND

(FALSE = TRUE OR TRUE = FALSE) = FALSE

XOR(])

The XOR operator is used to perform a logical exclusion on two expressions, where
the expressions are Null, or are of Boolean subtype and have a value of True or
False.

The XOR operator can also be used a «bitwise operator» to make a bit-by-bit
comparison of two integers. If both bits are the same in the comparison (both are
0ss or 1>s), then a O is returned. Otherwise, a 1 is returned.

Example:

(TRUE XOR FALSE) = TRUE

AND

(FALSE XOR FALSE) = FALSE

Mathematical Operators

4 Add Variable

Name

Description

General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages

Operator - Comparison
Operator - Logical

Operator - Mathematical

Oscillators - Money Flow
Oscillators - Price

Primitive - Extremes
Primitive - Logical Operators

Primitive - Summation Create Script Line

Addition operator (+)

Performs addition of n number of vectors: Vector1 + Vector 2+ .. + Vectorn

Division operator (/ \)

Performs division of n number of vectors: Vectori/ Vectorz/ .. + Vectorn

Multiplication operator (*)

Performs multiplication of n number of vectors: Vector1* Vector2* ..*Vectorn

Subtraction operator (-)

Performs subtraction of n number of vectors: Vector 1- Vectorz- ..-Vectorn

Power operator(")

Rises a number to a power: 243 = 2*2*2 =8

Moving Averages

‘% Add Variable

Name

Description

4 Moving Averages Source
EMA Parid
ExponentialMoving Average
SimpleMovingAverage
SMA
TimeSeriesMoving Average

TMA

TriangularMoving Average

TSMA

VariableMovingAverage

VIDYA

VIDYAMovingAverage

VMA

VolumeWeightedMovingAverage

VIWMA

WeightedMoving Average

WellesWilderSmoothing Create Script Line

VAR A

Introduction

Moving averages are the foundation of quantitative technical analysis. These
functions calculate averages or variations of averages of the underlying vector.

Many technical indicators rely upon the smoothing features of moving averages as
part of their calculation.

The S-Trader trading platform and the Quant Script engine use no less than nine (9)
Moving Average types. You will find detailed specification sheets for all of them in
the Help section of the S-Trader.

Moving Averages List

Long Form Short Form Arguments
ExponentialMovingAverage EMA (Vector, Periods)
SimpleMovingAverage SMA (Vector, Periods)
TimeSeriesMovingAverage TSMA (Vector, Periods)
TriangularMovingAverage TMA (Vector, Periods)

VariableMovingAverage VMA (Vector, Periods)
VIDYAMovingAverage VIDYA (Vector, Periods)
VolumeWeightedMovingAverage| VWMA (Vector, Periods)
WeightedMovingAverage WMA (Vector, Periods)
WellesWilderSmoothing WWS (Vector, Periods)

Envelopes

% Add Variable

HName

Description

4 Emelopes
EBE
BEM
EET
BollingerBandsBottom
BollingerBandsMiddie
BollingerBandsTop
FCEBH
FCBL
FractalChaosBandsHigh
FractaiChacsBandsLow
HighlowBandsBottom
ngl‘..c.'.':'.ahds,!‘.lalr'u
HighlowBandsTop
HLEB
HLEM
HLET

KCB Create Script Line

Introduction

Certain technical indicators are designed for overlaying on price charts to form
an envelope or band around the underlying price. A change in trend is normally
indicated if the underlying price breaks through one of the bands or retreats after
briefly touching a band. The most popular band indicator is the Bollinger Bands,
developed by stock trader John Bollinger in the early 1980's. You can find detailed
specification sheets on all envelope studies in the Help section of the S-Trader.

Envelopes List

Long Form Short Form Arguments
BollingerBandsTop BBT
BollingerBandsMiddle BBM (Vector, Periods, StDevs, MA Type)
BollingerBandsBottom BBB
FractalChaosBandsHigh FCBH
FractalChaosBandsLow FCBL
HighLowBandsTop HLBT
HighLowBandsMain HLBM (Vector, Periods, Shift)
HighLowBandsBottom HLBB
KeltnerChannelTop KCT
KeltnerChannelMedian KCM
KeltnerChannelBottom KCB
KeltnerChannelTopST KCTST
KeltnerChannelMedianST KCMST
KeltnerChannelBottomST KCBST
MovingAverageEnvelopeTop MAET
MovingAverageEnvelopeMain MAEM (Periods, MA Type, Shift)
MovingAverageEnvelopeBottom MAEB
PrimeNumberBandsTop PNBT
PrimeNumberBandsBottom PNEB 0
StollerAverageRangeChannelTop STARCT
StollerAverageRangeChannelMedian STARCM
StollerAverageRangeChannelBottom STARCB
StandardErrorBandsTop SEBT
StandardErrorBandsMiddle SEBM (Vector, Periods, MA Type, Multiplier)
StandardErrorBandsBottom SEBB

(Periods)

(Periods, MA Type, ATR Period, ATR MA
Type, ATR Shift)

(Source, Periods, MA Type, ATR Period,
ATR MA Type, ATR Shift)

(Vector, Periods, MA Type, ATR Periods,
ATR MA Type, Multiplier)

Oscillators (Price)

“ Add Variable

Mame

Description

4 Oscillators - Price
ccl
CenterOfGravity
CFO
ChandeForecastOscillator
ChanderMomentumOscillator
CMO0
COG
CommedityChannelindex
CoppockCurve
CPKC
DetrendedPriceOscillator
DPO
ElderRayBearPower
ElderRayBullPower
ElderThermometerBear
ElderThermometerBull

Create Script Line
FRORD

Introduction

An oscillator is a technical analysis tool that is banded between two extreme
values and built with the results from a trend indicator for discovering short-term
overbought or oversold conditions. As the value of the oscillator approaches the
upper extreme value, the asset is deemed to be overbought, and, as it approaches
the lower extreme, it is deemed to be oversold. The slope of the oscillator is usually
proportional to the velocity of the move. Likewise, the distance the oscillator moves
up or down is usually proportional to the magnitude of the move. In this section we
will take a look at the Price Oscillators available in the S-Trader and Quant Script
engine. As usual detailed spec sheets for each study can be found in the Help
section of the S-Trader.

Price Oscillators List

Long Form Short Form Arguments
CenterOfGravity COG (Vector, Periods)
ChandeForecast Oscillator CFO (Vector, Periods)
ChandeMomentumOscillator CMO (Vector, Periods)
CommodityChannellndex cal (Periods, MA Type)
CoppockCurve CPKC (Vector, Periods 1, Periods 2, Periods 3, MA Type)
DetrendedPriceOscillator DPO (Vector, Periods, MA Type)
ElderRayBullPower ERBP
ElderRayBearPower ERRP
ElderThermometerBull ETHB
ElderThermometerBear ETHR
FractalChaosOscillator FCO (Periods)
IntradayMomentumindex IMI (Periods)
MACDStudy MACD
MACDSignal MACDS (Vector, Periods 1, Periods 2, Periods 3, MA Type)
MACDHistogram MACDH
MACDSTraderStudy MACDST
MACDSTraderSignal MACDSTS
MACDSTraderHistogram MACDSTH
MomentumOscillator MO (Vector, Periods)

(Periods, MA Type)

(Periods)

(Vectorl, Periods 1, MA Type 1, Vector 2, Periods 2,
MA Type 2, Periods 3, MA Type 3)

Long Form

ParabollicSAR

Short Form
PSAR

Arguments

(Min AF, Max AF)

Performancelndex

PFI

(Vector)

PrettyGoodOscillator

PGO

(Vector, MA Periods, MA Type,
ATR Period, ATR MA Type)

PercentagePriceOscillator
PercentagePriceOscillatorSignal
PercentagePriceOscillatorHistogram

PPO
PPOS
PPOH

(Vector, Periods 1, Periods 2, MA Type)

RateOfChange

ROC

(Vector, Periods)

PrimeNumberOscillator

PNO

(Vector)

Qstick

QSTK

(Periods, MA Type)

RainbowOscillator

RBO

(Vector, Levels, MA Type)

RelativeStrengthindex

RSl

(Vector, Periods)

StochasticMomentumindexK
StochasticMomentumindexD

SMIK
SMID

(K Periods, K Smooth, K Double Smooth, D
Periods, MA Type 1, MA Type 2)

StochasticOscillatorPCTK
StochasticOscillatorPCTD

SOPK
SOPD

(K Periods, %K Periods, %D Periods, MA Type)

StochasticOscillatorPCTKST
StochasticOscillatorPCTDST

SOPKST
SOPDST

(K Periods, %K Periods, %D Periods, MA Type 1,
MA Type 2)

TrueStrengthindex
TrueStrengthindexSmooth

TSl
TsIS

(Vector, Period, FSPC Periods, FSPC MA Type,
DSPC Periods, DSPC MA Type, FSAPC Periods,
FSAPC MA Type, DSAPC Periods, DSAPC MA
Type, TSI Smooth Per, TSI Smooth MA Type)

UltimateOscillator

uo

(Periods 1, Periods 2, Periods 3)

UltimateOscillatorST

(Periods 1, Periods 2, Periods 3, MA Type)

WilliamsPctR

(Periods)

Oscillators - Money Flow

% Add Variable

MName

Description

4 Oecillators - Money Flow
AceDistCurmm ulatie
AccDistindvidua
ADI
ADT
ChaikinkloneyFlow
CMF
EaseOfviovement
EA
ElderForceindex
EOM
KlingervolumeOscillator
KingervVolumeOscillatorHistogram
KingerVolumeOscillatorSignal
‘..\fl:l
A} DH
VDS

= Creabe Script Line
blarkstEarilitatinnimiey

Introduction

As said before, an oscillator is a technical analysis tool that is banded between two
extreme values and built with the results from a trend indicator for discovering
short-term overbought or oversold conditions. As the value of the oscillator
approaches the upper extreme value, the asset is deemed to be overbought, and,
as it approaches the lower extreme, it is deemed to be oversold. The slope of the
oscillator is usually proportional to the velocity of the price move. Likewise, the
distance the oscillator moves up or down is usually proportional to the magnitude
of the move. In this section we will take a look at the oscillators that measure
money flow, i.e. volume and volume momentum. As usual detailed spec sheets for
each study can be found in the Help section of the S-Trader.

Money Flow Oscillators List

Long Form Short Form Arguments
AccDistIndividual ADI
AccDistCummulative ADT
ChaikinMoneyFlow CMF (Periods)
EaseOfMovement EOM (Periods, MA Type)
ElderForcelndex EFI (Periods, MA Type)
KlingerVolumeOscillator KvVO
KlingerVolumeOscillatorSignal KvVOs
KlingerVolumeHistogram KVOH
MarketFacilitationindex MKTFI ()
MoneyFlowindex MFI (Periods)
NegativeVolumelndex NVI (Vector)
OnBalanceVolume OBV (Vector)
PositiveVolumelndex PVI (Vector)
PriceVolumeTrend PVT (Vector)
TradeVolumelndex VI (Vector, Minimum Tick Move)
TwiggsMoneyFlow TMF (Periods)
VolumeOscillator VO
VolumeOscillatorSignal VOSs
VolumeOscillatorHistogram VOH
VolumeRateOfChange VROC (Periods)
WilliamsAccumulationDistribution WAD ()
WilliamsVariableAccDist WVAD (Periods, MA Type)

(Periods)

(Periods 1, MA Typel, Periods 2, MA Type 2,
Periods 3, MA Type3)

(Periods 1, Periods 2, MA Type, PointsPercent,
Periods Signal, Signal MA Type)

Trend Indicators

‘% Add Variable

MName

Description

Trend Indicators
AccumulativeSwingIndex
ADX
ADXR
AROD
AroonDown
AroonOscillator
AroconUp
AROOSC
AROU
AS|
AverageDirectionalindex
AverageDirectionalindexRating
DIM
P
Directionallindex
DirectionalindexNegative

DirectionalindexPositive Create Script Line

Introduction

As their name reveals, trend indicators measure the direction and intensity of
price trends. They are exceptionally important in separating trending phases of
the market from non-trending ones which is perhaps one of the most important
distinction to make when deciding how to approach and model market risk and
market opportunity. As usual detailed spec sheets for each study can be found in
the Help section of the S-Trader.

Trend Indicators List

Long Form Short Form Arguments
Swing Index SI .
AccumulativeSwinglindex ASl ()/ (Periods)
AroonUp AROU
AroonDown AROD (Periods)
AroonOscillator AROOSC
AverageDirectionalindex ADX
AverageDirectionallndexRating ADXR
DirectionallndexPositive DIP
DirectionalindexNegative DIN (Periods)
Directionallndex DX
TrueRangeSummation TRSUM
SmoothedPositiveDM SPDM
SmoothedNegativeDM SNDM
GopalakrishnanRangelndex GOPRI (Periods)
Forecast LRF
TimeSeriesForecast TSF
Intercept LRI (Vector, Periods)
Slope LRS
Rsquared R2
RandomWalkindexUp RWIU
RandomWalkindexDown RWID
RangeActionVerificationindex RAVI (Vector, Periods 1, MA Type 1, Periods 2, MA Type 2)
SchaffTrendCycleMACD STCMACD | (Vector, Per 1, MA Type 1, Per 2, MA Type 2, Signal
Periods, MA Type 3, K Per 1, %K Per 1, %D Per 1, MA
Type 4, MA Type 5, K Per 2, %K Per 2, %D Per 2, MA

Type 6, MA Type 7)

(Periods, MA Type)

SchaffTrendCycleMACDS STCMACDS | (Vector, Per 1, MA Type 1, Per 2, MA Type 2, Signal

Periods, MA Type 3, K Per 1, %K Per 1, %D Per 1, MA

Type 4, MA Type 5, K Per 2, %K Per 2, %D Per 2, MA
Type 6, MA Type 7)

TRIXIndicator (Periods)

VerticalHorizontalFilter (Vector, Periods)

Volatility Indicators

‘% Add Variable

Name

Description

4 Volatility
ATR
AverageTrueRange
ChaikinVolatility
v
EFT
EFTS
EhlerFisherTransform
EhlerFisherTransformSignal
HighMinusLow
HistoricalVolatilitylndex
HML
HVI
Massindex
M
LI
TrueRange

Create Script Line
TWAI

Introduction

Volatility is the one coin whose two sides represent what is significant about
financial markets, i.e. opportunity and risk. As usual detailed spec sheets for each
volatility study can be found in the Help section of the S-Trader.

Volatility Indicators List

Long Form Short Form

ChaikinVolatility cv

Arguments

(Periods, ROC Periods, MA Type)

EhlerFisherTransform EFT
EhlerFisherTransformSignal EFTS

(Lookup Periods, Raw Smooth Periods, Fisher
Smooth Periods, Fisher Signal Periods)

HighMinusLow HML

)

HistoricalVolatilitylndex HVI

(Vector, Periods, Annualized Bar Periods,
Multiplier)

Massindex Ml

(EMA Periods, Summation Periods)

TrueRange TR

0

AverageTrueRange

(Vector, Periods, MA Type)

ZValue

(Vector, Periods, MA Type)

Statistical Functions

“ Add Variable

MName

Description

4 Statistics
Average
AVG
CA
CorrelationAnalysis
EKURT
Kurtosis
MedianPrice
MP
SDV
SERR
SKEW
SKEWNESS
Standard Deviations
StandardError
TP
TypicalPrice

Create Script Line
WC P

Introduction

A statistic (singular) or sample statistic is a single measure of some attribute of
a sample (e.g., its arithmetic mean value). It is calculated by applying a function
(statistical algorithm) to the values of the items of the sample, which are known
together as a set of data.

Descriptive statistics are used to describe the basic features of the data in a study.
They provide simple summaries about the sample and the measures. Together
with simple graphics analysis, they form the basis of virtually every quantitative
analysis of data.

Descriptive statistics are typically distinguished from inferential statistics. With
descriptive statistics you are simply describing what is or what the data shows.
With inferential statistics, you are trying to reach conclusions that extend beyond
the immediate data alone.

Current Quant Script capabilities pertain to descriptive statistics. Inferential
statistics capabilities are planned in future versions of the S-Trader application.

Statistical Functions List

Long Form Short Form Arguments
Average cv (Vector, Periods)
Median MP ()
TypicalPrice TP ()
WeightedClose wWcC ()
Kurtosis KURT (Vector, Periods, MA Type, Excess Threshold)
Skewness SKEW (Vector, Periods, MA Type)
StandardDeviation SDV (Vector, Periods, Multiplier, MA Type)
StandardError SERR (Vector, Periods, Multiplier, MA Type)
CorrelationAnalysis CA (Vector 1, Vector 2, MA Type, Periods, Offset V2)

% Add Vanable

Mame

Math Function - Trigonometric
P Moving Averages
P Oparator - Companion
v Operator - Logical
b Operator - Mathematica
v O=cillators Money Flow
P Oscillators - Price
Primithve - Extremes
Primitive - Logical Operators
Primitive - Semmation
P Primitive - Trend
Relative Strength
ComparativeRelat .eh'.rer\qtr“:'\:le:u
CRSI
b Statithics
P SVA Functions
I+ Trend Indicators
b Wolatility Creste Script Lins

Relative Strength Functions List

Long Form Short Form Arguments

ComparativeRelativeStrengthindex CRSI (Vector 1, Vector 2)

This function returns the ratio between VVector 1 and Vector 2.

General Indicator Functions

“ Add Varnable

MName

Description

General Indicator Functions
CandlestickPattern
Candlesticks
CsP

Math Function - Algebraic

Math Function - Trigonometric

Moving Averages

Operator - Comparison

Operator - Logical

Operator - Mathematical

Oscillators - Money Flow

Oscillators - Price

Primitive - Extremes

Primitive - Logical Operators

Primitive - Summation

Primitive - Trend

Relative Strength

b
P
P
b
b
P
P
P
b
P
P
b
P
B

Statistics Create Script Line

Candlesticks Patterns
What is a <Candlestick»>

A candlestick is a chart that displays the high, low, opening and closing prices of
a security for a specific time frame (i.e. 1 hour, 1 day, etc) over a specific period of
time. The wide part of the candlestick is called the «real body» and tells investors
whether the closing price was higher or lower than the opening price. Black/red
indicates that the stock closed lower and white/green indicates that the stock
closed higher.

The candlestick>s shadows show the day»s high and low and how they compare to
the open and close. A candlestick>s shape varies based on the relationship between
the day>s high, low, opening and closing prices.

Candlesticks reflect the impact of investor sentiment on security prices and are
used by technical analysts to determine when to enter and exit trades. Candlestick
charting is based on a technique developed in Japan in the 1700s for tracking the
price of rice. Candlesticks are a suitable technique for trading any liquid financial
asset such as stocks, foreign exchange and futures.

Long white/green candlesticks indicate there is strong buying pressure; this
typically indicates price is bullish, however, they should be looked at in the context
of the market structure as opposed to individually. For example, a long white candle
is likely to have more significance if it forms at a major price support level. Long
black/red candlesticks indicate there is significant selling pressure. This suggests
the price is bearish. A common bullish candlestick reversal pattern, referred to as a
hammer, forms when price moves substantially lower after the open, then rallies
to close near the high. The equivalent bearish candlestick is known as a hanging
man. These candlesticks have a similar appearance to a square lollipop, and are
often used by traders attempting to pick a top or bottom in a market.

Candlestick Pattern Function

This function returns a value based on the identified candlestick pattern:

» LONG_BODY =1

= DOJI =2

» HAMMER =3

» HARAMI = 4

» STAR=5

» DOJI_STAR =6

» MORNING_STAR =7

» EVENING_STAR =8

» PIERCING_LINE =9

» BULLISH_ENGULFING_LINE =10
» HANGING_MAN = 11

» DARK_CLOUD_COVER =12

» BEARISH_ENGULFING_LINE =13
= BEARISH_DOJI_STAR =14

» BEARISH_SHOOTING_STAR = 15
» SPINNING_TOPS = 16

» HARAMI_CROSS = 17

» BULLISH_TRISTAR =18

» THREE_WHITE_SOLDIERS = 19
» THREE_BLACK_CROWS = 20

« ABANDONED _BABY = 21

» BULLISH_UPSIDE _GAP = 22

» BULLISH_HAMMER = 23

» BULLISH_KICKING = 24

» BEARISH_KICKING = 25

» BEARISH_BELT_HOLD = 26

» BULLISH_BELT_HOLD =27

» BEARISH_TWO _CROWS = 28

» BULLISH_MATCHING_LOW = 29

SVA Equity Valuation Functions

% Add Variable

Name

Description

Movimg Averages
Operator - Comparisan
Operator - Logica
Operator - Mathematical
Cecillators - Money Flow
Oscillators - Price
Primitive - Extremes
Primitive - Logical Operators
Primitive - Summation
Primitive - Trend
Relative Strength
Statistics
SVA Functions
IV function
SR_function
SVA_function
Trend Indicators

Valatility Create Script Line

Introduction

Structural Valuation Analysis (SVA) was first detailed by Dr. Verne Atrill in his
manuscript, How All Economies Work, and has since been refined into an investment
research system by the Strategic Analysis Corporation (SAC).

The key to using SVA is the understanding that the stock market is broken into
a spectrum of “valuation zones” That is to say, the stock market does not treat
the valuation process as a continuum, but as a spectrum. These valuation zones
are bounded by Breakpoints, which correspond to fixed multiples of an entity's
adjusted book value per share, referred to as the Normal Price. These multiples
have their origin in Dr. Atrill's theory of Accounting Dynamics, which explored how
physical constants emerge to govern the financial structure of a firm. Zones are
characterized by entity stability, risk, and investor expectations. At the Breakpoints,
there is a natural tendency for prices to be turned back, thereby providing signals
for optimal buying and selling points.

SVA Functions List

Long Form Short Form Arguments

FMV_function ()
SR_function ()
SVA_function ({Breakpoint Acronym})

For the SVA Function, the Breakpoints are:

High Bubble 8 HB8 Growth

High Bubble 7 HB7 High Conservation
High Bubble 6 HB6 High-Mid

High Bubble 5 HB5 Normal

High Bubble 4 HB4 Low-Mid

High Bubble 3 HB3 Low Conservation
High Bubble 2 HB2 Blue

High Bubble 1 HB1 Deep Blue 1
Bubble BB Deep Blue 2

Mid Super Growth MSG Deep Blue 3

Low Super Growth LSG Deep Blue 4
Super Growth SG Deep Blue 5
Mid-Growth MG Deep Blue 6

Sample Scripts

The quant script engine allows you to create scripts using either an editor or a
wizard. The editor is typically required in the case of Expert Advisers and Scripted
Alerts and is optional under the Custom Studies.

W Custom Study Editor
Save To Group Default
Custom Study Name
Password

Histogram

Result

Reverse_Result Histogram

Formula

The custom study script editor is showcased above. You can type code in that dialog
or in any other text editor such as Notepad ++ or Crimson editor and copy / paste
that code in the dialog.

Sample Custom Study 1 — RSI Histogram

COPY / PASTE this code inside your code editor

Plotting the difference between a Relative Strength Index from Close for 14
Periods and its 20 Periods Exponential Moving Average

DEFINE RSl variable
SET A = RSI(CLOSE, 14)

#DEFINE EMA of RSl variable
SET B = EMA(A,20)

#DEFINE RSI Histogram result
SET RESULT = A-B

#DEFINE RSI Histogram inverse result
SET REVERSE _RESULT = (-1)* (RESULT)

This is how the editor would look like:

% Custom Study Editor

Add To Mew Pane

Plotting the difference between a Relative Strength Index from Close for 14 Periods and its 20
Periods Exponential Moving Average

DEFINE RSl variable
SET A = RSI(CLOSE,14)

#DEFINE EMA of RSl variable
SET B = EMA(A,20)

#DEFINE RSI Histogram result
SET RESULT = A-B

#DEFINE RSI Histogram inverse result
SET REVERSE_RESULT = (-1)*(RESULT)

When plotted on a chart, the custom study RSI_Histogram would look like this:

¥ £5U8 1 Min

ESUE = 2T168.25

: Z2738.00
- 27aa.00
:2‘?33.00
- 2730.00
2727 .00
-- 27 24.00
272100

F2716.00

A

WMV”W\MJ\/V hfwutw.l\JMWW\WWM |

O 00D 0D ARA O D0 00D ARA 19 0000 AR 05 D000 FhA
SJuim, 2F, 2018

Sample Custom Study 2 - RSI Histogram Scoring

Expanding on the previous example, we will now create a custom study that will
return +1 when the RSI Histogram is positive and -1 when it is negative.

COPY / PASTE this code inside your code editor

Plotting +1 if the difference between a Relative Strength Index from Close for
14 Periods and its 20 Periods Exponential Moving Average is positive and -1 if it is
negative

DEFINE RSI variable
SET A = RSI(CLOSE, 14)

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFINE RSI Histogram
SET RSIHISTO = A-B

#DEFINE RSI Histogram Score result
SET RESULT = IF(RSIHISTO>0, 1, IF(RSIHISTO<O, (-1), 0))

#DEFINE RSI Histogram Score inverse result
SET REVERSE _RESULT = (-1)*(RESULT)

Default

ame RSI_Histogram_Score

Histogram

Histogram

it is negatr

DEFINE R5I
SETA=R

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFIMNE RSI Histogram
SET RSIHISTO = A-B

#DEFINE RSI Histogram Score result
SET RESULT = IF

#DEFINE RSI His
SET REVERS

When plotted on a chart, the custom
like this:

tzroo.oo

aras.oo

[270000

ares.oo

t2r7o.00

fares oo

tzreo.oo

]

aras.oo

k2ran oo

[aras.co

oF
dun. Zo1n

Sample Custom Study 3 — RSI Histogram days since turning positive
and negative

Expanding on the previous two examples, we will now create a custom study that
will return the number of periods since the RSI_Histogram last crossed into positive
and the number of days since it last crossed into negative.

COPY / PASTE this code inside your code editor
Plotting periods since positive or negative cross for RSI Histogram

DEFINE RSI variable
SET A = RSI(CLOSE, 14)

#DEFINE EMA of RSI variable
SET B = EMA(A,20)

#DEFINE RSI Histogram
SET RSIHISTO = A-B

#DEFINE CROSS ABOVE ZERO
SET ABOVEZERO = RSIHISTO > 0 AND REF(RSIHISTO, 1)<0

#DEFINE CROSS BELOW ZERO
SET BELOWZERO = RSIHISTO < 0 AND REF(RSIHISTO, 1)>0

#DEFINE PERIODS SINCE POSITIVE CROSS RESULT
SET RESULT = LASTIF(ABOVEZERO)

#DEFINE PERIODS SINCE NEGATIVE DAYS RESULT
SET REVERSE _RESULT = LASTIF(BELOWZERO)

This is how the editor would look like:

% Custom Study Editor

Default

RSI_HISTO

Formula

Plotting periods since positive or negative cross for RSI Histogram

D REF(RSIHISTO, 1)<0
D REF(RSIHISTO, 1)>0
S RESULT

#DEFINE PERIODS CEN VERSE RESULT
SET REVER T=

When plotted on a chart, the custom study PER_SINCE _RSI_HISTO would look like
this:

el

l| e
A=

i W=
'“’“ 'W VI

F2766.00

|||||| all ..|||||||| all i .|I||||"|“N .||I||||““| al ..||||||H al il

12
Jun. 2018

Using the Script Wizard

The exact same scripts built by the code editor above can be built using the Script
Wizard. You would go and create the script line by line, choosing the right function

from its group, setting the desired arguments and pressing the “Create Script Line”
button.

Sample Custom Study 4 - RSI Histogram by Script Wizard

% Custom Study Wizard
Save To Group Default
Custom Study Name

Password

Result Histogram -~ . v BB

Add To New Panel [+
Add New Variable Edit Selected Variable

Description

SET A = RSI (CLOSE, 14)

% Add Variable
MName
A

Description
RSI of Close, 14

PGO

PNO

PPO

PPOH

PPOS

PrettyGoodOscillator

PrimeNumberOscillator

PSAR

Qstick

QsTK

RainbowOscillator

RateQfChange

RBO

RelativeStrengthindex

ROC

RSI

SMID

SMIK
RelativeStrengthindex(CLOSE, 14)

SET B =EMA (A, 20)

% Add Variable
Name
B

Description
EMA 20 of A

Ervelopes
General Indicator Functions
Math Function - Algebraic
Math Function - Trigonometric
Moving Averages
EMA
ExponentialMovingAverage
SimpleMoving Average
SMA
TimeSeriesMovingAverage
TMA
TriangularMovingAverage
TSMA
VariableMovingAverage
VIDYA
VIDYAMovingAverage
VMA
VolumeWeiahtedMovinoAverage
EXPONENTIALMovingAverage(A, 20)

Source

Period

Source

Period

Create Script Line

Create Script Line

SET RESULT = A-B

‘% Add Variable

Name
RESULT

Description

Envelopes MNum of variables

General Indicator Functions

Math Function - Algebraic Source 1
Math Function - Trigonometric Source 2
Moving Averages

Operator - Comparison

Operator - Logical

Ao o vewew

Operator - Mathematical

Oscillators - Money Flow
Oscillators - Price
Primitive - Extremes
Primitive - Logical Operators Clewe, sipLone

-B

SET RE SET REVERSE _RESULT = (-1)*(RESULT) SULT = A-B

% Add Variable

Name
REVERSE_RESUILT

Description

Envelopes Num of variables

General Indicator Functions

Math Function - Algebraic Source 1
Math Function - Trigonometric Source 2 RESULT
Moving Averages

Operator - Comparison

Operator - Logical

Ao vvoveowvwew

Operator - Mathematical

Oscillators - Money Flow

Oscillators - Price

Primitive - Extremes

Primitive - Logical Operators Cleas SripDew

[-1)* RESULT

‘% Custom Study Wizard

Save To Group Default
Custom Study Name RSI_HISOGRAM_
Pass
Histogram
Histogram
o New Panel [+
Add New Variable Edit Selected Variable

Description

When plotted on a chart, the custom study RSI_HISTO_WIZARD would look like
this:

%y
L%l
Vi

wﬂmﬂ” "““‘ufj \.

“.LUHJh1"F.#J.L""H‘tH‘del‘*1‘h‘

jiulg1ll1lllhjt

Wt mrmpe 1f

20 21 £ 26 27
Jun. 2018

If compared to the equivalent custom study built by editor, you will notice the values
are identical:

Y ESUB 1 Howr B X

ESUB = 2704.50 *u

=27 B80.00

=27 70.00

"W “|| 'f

= 27 50.00
= 2740.00

=27 30.00

Using Quant Script in the S-Trader

There are many uses for Quant Scriptinside the S-Trader application. Below we are
giving you a couple of sample uses to show you how powerful Quant Scriptreally is.

Custom Studies

Build Custom Studies by Code Editor

‘% Custom Study Editor
Save To Group Defauilt

Custom Study Mame RSI_HISTOGRAM

Histogram
Reverse_Result Histogram

Formula

SET A = RSI(CLOSE,14)
SET B = EMA(A,8)

SET RESULT = A-B
SET REVERSE_RESULT = B-A

Build Custom Studies by Code Wizard

% Custom Study Wizard
Save To Group Default -
Custom Study Name RSI_HISTOGRAM_WIZARD
Pz

T Histogram

Reverse_Result Histogram

Add New Variable

Description
B
RESULT
REVERSE_RESULT

Plot Custom Studies on charts

¥ @ESU18 1 Hour

DESU18 = 2728.00

CODE EDITOR STUDY

||I||| |-- Illl' IlIlIll“I . II IIIIII e 'Illll"llllllllrl yl |||||||||..I||I|

CODE WIZARD STUDY

Add To New Panel |/

Edit Selected Variable

26 =27 =0)

S-Trader

Plot Custom Studies on charts — RESULT function only

If you are willing to plot only one function, i.e. RESULT, then set your Custom Study
as such. This is only advisable for the Custom Studies you plan to use on charts

% Custom Study Editor
Save To Group Default

Custom Study Mame RSI_HISTOGRAM

Histogram -

Add To New Panel |/
Formula

SET A = RSI{CLOSE, 14)
SETB = EMAIA,B)

SET RESULT = A-B

% Custom Study Wizard

Save To Group Default -
Custom Study Name RSI_HISTOGRAM_WIZARD

Password

Add To New Panel |/
Add New Variable Edit Selected Variable
Description
RSl 14 from CLOSE

EMA 8 of RSl 14 from CLOSE
A-B

BESU18 = 2727.75

m.w. IJ'#_

||| ‘" I‘I‘l‘ul‘h“l L Il "Illl.llll.ll“l “||II‘“|I.II|| s |||I‘|I||“|"|I

26
Jun. 2018

Nest Custom Studies inside other Built-in Studies

Custom studies can be nested, i.e. used as vectors, inside a lot of other built-in
function. In the examples below you see an Exponential moving average and a
Bollinger Band indicator plotted on the RSI_HISTOGRAM Custom Study built by
Code Editor and Code Wizard, respectively.

W Bollinger Bands

Run Custom Studies inside Watch List columns

You can calculate any script for any time frame and see its on-the-fly result updated
in real time by choosing to runitinside watch list columns:

% Column Manager

Time

Volume
Last Size z
Open “ Formula Selection
High
Low
Close

Change c CTOC-R A
Range Formula RSI_HISTOGRAM

Group Detault

Open Interest

Spread Pericdicity Minute
Tick

Percent Change Bar Interval 1
Settle

Extended Trading Changs

Add Formula

@ESU18 - E-MINI 5P 500 FUTURE SEP 2018 275 2T43.50 274375
USDCAD.FXCM - FXCM USD CAD Spot 0 1.31480 1.31490

Use Custom Studies inside Portfolio Systems

You can use Custom Studies inside Portfolio Systems to build matrices and Relative
Strength numbers for any portfolio in any time frame:

% Porfolio Setup Dialog

gol.m.‘ Data m Lo<al Data ‘:’.—.&.—..-.-\-.1-1--1 Data @ Local Composite Data US SECTORS - RS HISTOGRAM fg & od
—

Exnct Siring - Search

 merican Seciors Close

W | RSl HISTOGRAM
SEF) S Energy Select ETF
= I Feed - Conrected
[SPDR | S&P L1 5. Maerinls Sslact ETF)
DR | 58P L5 Industriaks Sedect ETF
R | 5&F U.5. Consumer Dhscrebonary Select ETF)
SEP LS Consumer Staples Select ETF
1| S&P LS. Haalt
SAP LS
SAP U S Technology Selac
i1 58P U.5. Telecom Select E
R | S5F LS. Uslities Select ETF
Carada Seciers (GICs)

wean Porthal - Marth Amencan Bonds

b B1. Precious Metals Portiolio
b [STIR Fulsres
[« |—* Cuatom Lk

Felative
Sex
Sarength one

X xp ik XLF ML

I7 4T 250938 525757 E.8502 1an £ 25453 350677 S073e7 470502 0.71707
14 04501 0507 -3 58457 4 43166 522161 0.30852 44009 140678 369775 2 39736 -3 66728
15,3058 3.5624 525757 2 40095 2 24362 0.58483 101924 056761 0.38745 547367
37183 757459 £.85021 -2 400135 4 BBEIT -1.74562 -2 26535 3.09856 311539 7. 1437
750513 £0.5606 Amxe 2 24362 4 BERST 5 54682 053587 1.48617 162145 565538
2975241 545687 £ 25462 {58483 1.74562 5.54682 338975 1.9689 174221 761001
-2 F94E -1.52402 -3 50677 1.01524 2 2535 0.53%&7 338975 043876 010421 391128
11.57319 -3.39102 507357 056761 3105868 -1.48617 1.9689 4537 {02995 501653
847752 412003 4 TS02 0.38745 311539 1 62145 1.74221 010421 029956 540252
45 22847 6. 19857 anm? SATET 7.7H37 569536 761001 3amzs 501653 540252

Essentially this gives you an opportunity to evaluate universe of investments
according to your preferred formulas and algorithms, for any desired list of
instruments or securities over any time frame you want.

Use Custom Studies inside Loop Systems

Use Custom Studies inside Loop Trading Systems for validation of customized
trading algorithms inside totally flexible binomial tree logical sequences;

Expert Advisers

Build filters or triggers to plot on charts

One of the things you can do with expert advisers is visually plot occurrences of
certain events on charts. You can, for instance, set trend filters to color your bars
with specific colors:

W Expert Adwvisor

Propeeries

TREMD FILTER kA 34 BEAWMER

S-Trader

Finally, you can place symbols on charts to illustrate occurrence of events such as
Crossovers:

% Expert Advisor

Frapectien

EA Kame

SETA = EMANCLOSE 13
SET B = EMAGCLOSE T
SET RESAAT = i) A (REF

SET A = EMBAGCLTSE, 15
$ET B = EMARSLOSE 1)
SET RETAAT = 4 B AN REF

= X W Expert Advisors

S-Trader

Consensus Reports

If you want to see the frequency of occurrence of certain events over a specific bar
count, you can run a Consensus Report based on any Expert Advisor:

FFIL.TE
FIEL R]
IS R-1Y

- ITAT B0

[&7,
 EFID.TE
[o, e
= FFaz.Fe
TSR]

kzrao o [l The "THREND FILTER A 55 spert sdviscr generaled &7 -
bullish migrals amd 13 bearsh signals within the provicas 100
b

L aran.oo
L zrem.os ffBulish Sonal 6250008 $16:00 AM

a1 AM
= FFam o

e arar v

T T o0

e E-1Y

- FFan mo

Eraa.TE

b ¥ e,

= ZFFas e

- FFaE,

1] 1 1 1 L [EF2iTE
OO0 O AR OO0 O AR
Jurs. 26, 306

LIk LHE JIES LN

Scripted Alerts
Back-test & Live Run

Build any simple “Long / Short / Exit Long / Exit Short” algorithms with total
flexibility and analyze the results over extended period of time:

The exact same way you can choose to run live algorithms you are comfortable
with.

